268 research outputs found

    Diffusion of linalool and methylchavicol from polyethylene-based antimicrobial packaging films

    Get PDF
    The diffusion of linalool and methylchavicol from thin (45–50 μm) antimicrobial low-density polyethylene-based films was evaluated after immersion in isooctane and the effect of temperature (4, 10, or 25 °C) on the diffusion rate was evaluated. The kinetics of linalool and methylchavicol release showed a non-Fickian behavior at the lowest temperature. An increase in temperature from 4 °C to 25 °C resulted in an increase in the diffusion coefficient from 4.2 × 10−13 m2 s−1 to 2.5 × 10−12 m2 s−1 for linalool and from 3.5 × 10−13 m2 s−1 to 1.1 × 10−12 m2 s−1 for methylchavicol. The effect of temperature on the diffusion coefficient followed an Arrhenius-type model (r2 = 0.972) in relation to a time-response function with a Hill coefficient. Activation energies of 57.8 kJ mol−1 (linalool) and 42.8 kJ mol−1 (methylchavicol) were observed

    Natural Antimicrobial - Containing EVOH Coatings on PP and PET Films: Functional and Active Property Characterization

    Full text link
    [EN] Natural antimicrobials are currently being tested by many researchers for active packaging applications as a response to consumer demands for safer food products. In previous work, several packaging materials consisting of ethylene vinyl alcohol (EVOH)-coated polypropylene (PP) films containing essential oils or their constituents as active agents were successfully developed and tested for antimicrobial activity. In this work, selected films from those materials, namely EVOH coatings with carvacrol, citral, marjoram essential oil, or cinnamon bark essential oil, on PP and polyethylene terephthalate (PET) substrates, were subjected to diverse physicochemical analyses in order to assess their suitability for food packaging applications. Concretely, the investigated properties were the stability of EVOH coatings on PP and PET substrates, the retainability of EVOH matrices for active compounds, the mechanical, optical, surface and barrier properties of the final active films and the effects of a matrix modification based on the addition of bentonite nanoclay on the performance of PP/EVOH active packages studied in actual working conditions. Results showed that the application of corona discharge followed by a polyethyleneimine-based primer was the best anchorage treatment available to stabilize EVOH coatings on PP and PET substrates. Furthermore, they demonstrated that the retention of active agents into EVOH matrices ranged from low to moderate, depending on the embedded substance, and that their presence into an EVOH coating in the final multilayer films did not noticeably affect their mechanical, optical or barrier properties, although it considerably improved their wettability. They also indicated that the inclusion of bentonite nanoparticles into their carrier layers substantially enhanced the performance of the final packages, while maintaining or slightly improving their other physical properties. Hence, as a conclusion, all the assayed multilayer films were considered perfectly valid for food packaging applications, and the incorporation of bentonite nanoclay to their carrier layers was also highly recommended. Copyright (c) 2014 John Wiley & Sons, Ltd.The authors thank the Spanish Ministry of Science and Innovation (projects AGL2009-08776 and AGL2012-39920-C03-01), European Commission (Nafispack project 212544) and Generalitat Valenciana (Josep P. Cerisuelo fellowship) for financial support, Instituto Tecnologico del Embalaje, Transporte y Logistica (associated unit of Consejo Superior de Investigaciones Cientificas) for scientific collaboration and Mr. Tim Swillens for correction services.Gavara Clemente, R.; Cerisuelo Ferriols, JP.; Hernández Muñoz, P. (2014). Natural Antimicrobial - Containing EVOH Coatings on PP and PET Films: Functional and Active Property Characterization. Packaging Technology and Science. 27(11):901-920. https://doi.org/10.1002/pts.2078S901920271

    Intakes of culinary herbs and spices from a food frequency questionnaire evaluated against 28-days estimated records

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Worldwide, herbs and spices are much used food flavourings. However, little data exist regarding actual dietary intake of culinary herbs and spices. We developed a food frequency questionnaire (FFQ) for the assessment of habitual diet the preceding year, with focus on phytochemical rich food, including herbs and spices. The aim of the present study was to evaluate the intakes of herbs and spices from the FFQ with estimates of intake from another dietary assessment method. Thus we compared the intake estimates from the FFQ with 28 days of estimated records of herb and spice consumption as a reference method.</p> <p>Methods</p> <p>The evaluation study was conducted among 146 free living adults, who filled in the FFQ and 2-4 weeks later carried out 28 days recording of herb and spice consumption. The FFQ included a section with questions about 27 individual culinary herbs and spices, while the records were open ended records for recording of herbs and spice consumption exclusively.</p> <p>Results</p> <p>Our study showed that the FFQ obtained slightly higher estimates of total intake of herbs and spices than the total intake assessed by the Herbs and Spice Records (HSR). The correlation between the two assessment methods with regard to total intake was good (r = 0.5), and the cross-classification suggests that the FFQ may be used to classify subjects according to total herb and spice intake. For the 8 most frequently consumed individual herbs and spices, the FFQ obtained good estimates of median frequency of intake for 2 herbs/spices, while good estimates of portion sizes were obtained for 4 out of 8 herbs/spices.</p> <p>Conclusions</p> <p>Our results suggested that the FFQ was able to give good estimates of frequency of intake and portion sizes on group level for several of the most frequently used herbs and spices. The FFQ was only able to fairly rank subjects according to frequency of intake of the 8 most frequently consumed herbs and spices. Other studies are warranted to further explore the intakes of culinary spices and herbs.</p

    Properties of biopolymer dispersions and films used as carriers of the biocontrol agent Candida sake CPA-1

    Full text link
    [EN] The use of biocontrol agents (BCA) for controlling plant diseases is an alternative to reduce the use of pesticides. Their performance can be improved when applied in combination with coatings. Films and coatings formulated from different biopolymers were characterized as to their barrier and optical properties to analyse their impact on fruit when applied as carriers of the BCA Candida sake CPA-1. The properties of the film-forming dispersions were more affected by the type of polymer than by the incorporation of surfactants. Sodium caseinate formed the thickest coatings, but these were very thin in every case, which led to there being no predicted relevant effect on the gas exchanges of the fruit. The cell viability in the films was good during film drying, especially in the case of protein films; however, it decreased after storage.The authors are grateful to the Spanish Government for the financial support through project RTA2012-00067-0O2 and to the Conselleria d'Educacio of the Generalitat Valenciana, (Spain) for A. Marin's PhD grant (VALi+d 2013). The authors are also thankful to IRTA group, headed by Dra. Neus Teixido, for their assistance in the microbiological study.Marín-Gozalbo, A.; Atarés Huerta, LM.; Cháfer Nácher, MT.; Chiralt, A. (2017). Properties of biopolymer dispersions and films used as carriers of the biocontrol agent Candida sake CPA-1. LWT - Food Science and Technology. 79:60-69. https://doi.org/10.1016/j.lwt.2017.01.024S60697

    Mathematical modeling of gallic acid release from chitosan films with grape seed extract and carvacrol

    Get PDF
    Controlled release of antimicrobial and antioxidant compounds from packaging films is of utmost importance for extending the shelf-life of perishable foods. This study focused on the mathematical modeling of gallic acid release into an aqueous medium from three chitosan films, formulated with grape seed extract (GSE) and carvacrol. We quantified the release by HPLC technique during 30days at three temperatures (5, 25 and 45°C). The diffusion coefficients, varying with temperature according to an Arrhenius-type relationship, and the respective activation energies for Film-1 and Film-2 were, respectively [Formula: see text] m2s-1 and [Formula: see text] m2s-1, Ea1=58kJmol-1 and Ea2=60kJmol-1 as obtained from the Fickian fit. The low concentrations of gallic acid released by Film-3 could not be detected by HPLC, therefore the respective diffusion coefficient was not estimated. This study will help with the development and optimization of active packaging (AP) films aiming at improved food preservation and shelf-life extension.Javiera F. Rubilar gratefully acknowledges her Ph.D. grant from ErasmusMundus 2008-1022/001 Frame ECW/17, EACEA(European Union), financial support of the Fondecyt-Postdoctoral #3140349 project from CONICYT, and also “Dirección de Investigación e Innovación Escuela de Ingeniería” at Pontificia Universidad Católica de Chile. Rui M. S. Cruz acknowledges grant SFRH/BPD/70036/2010 from Fundac¸ ão para a Ciência e Tecnologia, Portugalinfo:eu-repo/semantics/publishedVersio

    Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract

    Get PDF
    [EN] Novel active films of polylactide (PLA) containing extract of Allium ursinum L. (AU), also called wild garlic, at 10 wt% were succesfully prepared by the electrospinning technology. Electrospinning of the AU-containing PLA solutions yielded fibers in the 1-2 mu m range with a beaded-like morphology, suggesting that the AU extract was mainly encapsulated in certain fiber regions. The resultant electrospun mats were then subjected to annealing at 135 degrees C to obtain continuous films of application interest in active packaging. The film cross-sections revealed that the AU extract was incorporated into the PLA matrix in the form of micro-sized droplets. The thermal properties showed that the AU extract addition plasticized the PLA matrix and also lowered its crystallinity degree as it disrupted the ordering of the PLA chains by hindering their folding into the crystalline lattice. Thermal stability analysis indicated that the natural extract positively contributed to a delay in thermal degradation of the biopolymer and it was thermally stable when encapsulated in the PLA film. The AU extract incorporation also produced a mechanical reinforcement on the electrospun PLA films and improved slightly the water barrier performance. Finally, a significant antimicrobial activity of the electrospun PLA films containing the natural extract was achieved against foodborne bacteria.This paper has been supported by the COST Action FP1405 Active and intelligent fiber-based packaging - innovation and market introduction (ActInPak), FOODStars project Food Product Development Cycle: Frame for stepping Up Research Excellence of FINS (Grant Agreement 692276), the Spanish Ministry of Science, Innovation, and Universities (MICIU, project AGL2015-63855-C2-1-R) and the EU H2020 project YPACK (reference number 773872). Torres-Giner also acknowledges MICIU for his Juan de la Cierva-Incorporacion contract (IJCI-2016-29675).Radusin, T.; Torres-Giner, S.; Stupar, A.; Ristic, I.; Miletic, A.; Novakovic, A.; Lagaron, JM. (2019). Preparation, characterization and antimicrobial properties of electrospun polylactide films containing Allium ursinum L. extract. Food Packaging and Shelf Life. 21:1-9. https://doi.org/10.1016/j.fpsl.2019.100357S1921Barile, E., Bonanomi, G., Antignani, V., Zolfaghari, B., Sajjadi, S. E., Scala, F., & Lanzotti, V. (2007). Saponins from Allium minutiflorum with antifungal activity. Phytochemistry, 68(5), 596-603. doi:10.1016/j.phytochem.2006.10.009Belovic, M., Mastilovic, J., & Kevresan, Z. (2014). Change of surface colour parameters during storage of paprika (Capsicum annuum L.). Food and Feed Research, 41(2), 85-92. doi:10.5937/ffr1402085bBenkeblia, N. (2004). Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT - Food Science and Technology, 37(2), 263-268. doi:10.1016/j.lwt.2003.09.001Borges, A., Ferreira, C., Saavedra, M. J., & Simões, M. (2013). Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microbial Drug Resistance, 19(4), 256-265. doi:10.1089/mdr.2012.0244Braun, B., Dorgan, J. R., & Dec, S. F. (2006). Infrared Spectroscopic Determination of Lactide Concentration in Polylactide:  An Improved Methodology. Macromolecules, 39(26), 9302-9310. doi:10.1021/ma061922aCasasola, R., Thomas, N. L., Trybala, A., & Georgiadou, S. (2014). Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 55(18), 4728-4737. doi:10.1016/j.polymer.2014.06.032Chen, Y., Lin, J., Fei, Y., Wang, H., & Gao, W. (2010). Preparation and characterization of electrospinning PLA/curcumin composite membranes. Fibers and Polymers, 11(8), 1128-1131. doi:10.1007/s12221-010-1128-zCherpinski, A., Torres-Giner, S., Cabedo, L., & Lagaron, J. M. (2017). Post-processing optimization of electrospun submicron poly(3-hydroxybutyrate) fibers to obtain continuous films of interest in food packaging applications. Food Additives & Contaminants: Part A, 34(10), 1817-1830. doi:10.1080/19440049.2017.1355115Cherpinski, A., Torres-Giner, S., Vartiainen, J., Peresin, M. S., Lahtinen, P., & Lagaron, J. M. (2018). Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 25(2), 1291-1307. doi:10.1007/s10570-018-1648-zCushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343-356. doi:10.1016/j.ijantimicag.2005.09.002Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174-181. doi:10.1016/j.copbio.2011.08.007Drosou, C. G., Krokida, M. K., & Biliaderis, C. G. (2016). Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology, 35(2), 139-162. doi:10.1080/07373937.2016.1162797Fernandez, A., Torres-Giner, S., & Lagaron, J. M. (2009). Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids, 23(5), 1427-1432. doi:10.1016/j.foodhyd.2008.10.011Figueroa-Lopez, K. J., Vicente, A. A., Reis, M. A. M., Torres-Giner, S., & Lagaron, J. M. (2019). Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 9(2), 144. doi:10.3390/nano9020144Gamage, G. R., Park, H.-J., & Kim, K. M. (2009). Effectiveness of antimicrobial coated oriented polypropylene/polyethylene films in sprout packaging. Food Research International, 42(7), 832-839. doi:10.1016/j.foodres.2009.03.012Ilić, D., Ristić, I. S., Nikolić, L., Stanković, M., Nikolić, G., Stanojević, L., & Nikolić, V. (2011). Characterization and Release Kinetics of Allylthiosufinate and its Transforments from Poly(d,l-Lactide) Microspheres. Journal of Polymers and the Environment, 20(1), 80-87. doi:10.1007/s10924-011-0337-xIvanova, A., Mikhova, B., Najdenski, H., Tsvetkova, I., & Kostova, I. (2009). Chemical Composition and Antimicrobial Activity of Wild Garlic Allium ursinum of Bulgarian Origin. Natural Product Communications, 4(8), 1934578X0900400. doi:10.1177/1934578x0900400808Jin, G., Prabhakaran, M. P., Kai, D., Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34(3), 724-734. doi:10.1016/j.biomaterials.2012.10.026Kayaci, F., Umu, O. C. O., Tekinay, T., & Uyar, T. (2013). Antibacterial Electrospun Poly(lactic acid) (PLA) Nanofibrous Webs Incorporating Triclosan/Cyclodextrin Inclusion Complexes. Journal of Agricultural and Food Chemistry, 61(16), 3901-3908. doi:10.1021/jf400440bKhoddami, A., Wilkes, M., & Roberts, T. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18(2), 2328-2375. doi:10.3390/molecules18022328Kriegel, C., Kit, K. M., McClements, D. J., & Weiss, J. (2008). Nanofibers as Carrier Systems for Antimicrobial Microemulsions. Part I: Fabrication and Characterization. Langmuir, 25(2), 1154-1161. doi:10.1021/la803058cKyung, K. H. (2012). Antimicrobial properties of allium species. Current Opinion in Biotechnology, 23(2), 142-147. doi:10.1016/j.copbio.2011.08.004Llana-Ruiz-Cabello, M., Pichardo, S., Baños, A., Núñez, C., Bermúdez, J. M., Guillamón, E., … Cameán, A. M. (2015). Characterisation and evaluation of PLA films containing an extract of Allium spp. to be used in the packaging of ready-to-eat salads under controlled atmospheres. LWT - Food Science and Technology, 64(2), 1354-1361. doi:10.1016/j.lwt.2015.07.057López de Dicastillo, C., Bustos, F., Guarda, A., & Galotto, M. J. (2016). Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocolloids, 60, 335-344. doi:10.1016/j.foodhyd.2016.03.020López de Dicastillo, C., Nerín, C., Alfaro, P., Catalá, R., Gavara, R., & Hernández-Muñoz, P. (2011). Development of New Antioxidant Active Packaging Films Based on Ethylene Vinyl Alcohol Copolymer (EVOH) and Green Tea Extract. Journal of Agricultural and Food Chemistry, 59(14), 7832-7840. doi:10.1021/jf201246gMontava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758Pilić,.Pereira, A., Ferreira, I., Marcelino, F., Valentão, P., Andrade, P., Seabra, R., … Pereira, J. (2007). Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules, 12(5), 1153-1162. doi:10.3390/12051153Perry, C. C., Weatherly, M., Beale, T., & Randriamahefa, A. (2009). Atomic force microscopy study of the antimicrobial activity of aqueous garlicversusampicillin againstEscherichia coliandStaphylococcus aureus. Journal of the Science of Food and Agriculture, 89(6), 958-964. doi:10.1002/jsfa.3538Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 27(1), 84-96. doi:10.1007/s10924-018-1324-2Radusin, T., Tomšik, A., Šarić, L., Ristić, I., Giacinti Baschetti, M., Minelli, M., & Novaković, A. (2018). Hybrid Pla/wild garlic antimicrobial composite films for food packaging application. Polymer Composites, 40(3), 893-900. doi:10.1002/pc.24755Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., … Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56(1), 3-12. doi:10.1016/s0168-1605(00)00218-xRíos, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1-2), 80-84. doi:10.1016/j.jep.2005.04.025Sobolewska, D., Podolak, I., & Makowska-Wąs, J. (2013). Allium ursinum: botanical, phytochemical and pharmacological overview. Phytochemistry Reviews, 14(1), 81-97. doi:10.1007/s11101-013-9334-0Su, Y., Zhang, C., Wang, Y., & Li, P. (2011). Antibacterial property and mechanism of a novel Pu-erh tea nanofibrous membrane. Applied Microbiology and Biotechnology, 93(4), 1663-1671. doi:10.1007/s00253-011-3501-2Sun, L., Zhang, C., & Li, P. (2011). Characterization, Antimicrobial Activity, and Mechanism of a High-Performance (−)-Epigallocatechin-3-gallate (EGCG)−CuII/Polyvinyl Alcohol (PVA) Nanofibrous Membrane. Journal of Agricultural and Food Chemistry, 59(9), 5087-5092. doi:10.1021/jf200580tSuppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Antimicrobial Properties of Basil and Its Possible Application in Food Packaging. Journal of Agricultural and Food Chemistry, 51(11), 3197-3207. doi:10.1021/jf021038tTomšik, A., Pavlić, B., Vladić, J., Ramić, M., Brindza, J., & Vidović, S. (2016). Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrasonics Sonochemistry, 29, 502-511. doi:10.1016/j.ultsonch.2015.11.005Tomšik, A., Šarić, L., Bertoni, S., Protti, M., Albertini, B., Mercolini, L., & Passerini, N. (2019). Encapsulations of wild garlic (Allium ursinum L.) extract using spray congealing technology. Food Research International, 119, 941-950. doi:10.1016/j.foodres.2018.10.081Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208Torres-Giner, S., Pérez-Masiá, R., & Lagaron, J. M. (2016). A review on electrospun polymer nanostructures as advanced bioactive platforms. Polymer Engineering & Science, 56(5), 500-527. doi:10.1002/pen.24274Torres-Giner, S., Martinez-Abad, A., & Lagaron, J. M. (2014). Zein-based ultrathin fibers containing ceramic nanofillers obtained by electrospinning. II. Mechanical properties, gas barrier, and sustained release capacity of biocide thymol in multilayer polylactide films. Journal of Applied Polymer Science, 131(18), n/a-n/a. doi:10.1002/app.40768Torres-Giner, S., Wilkanowicz, S., Melendez-Rodriguez, B., & Lagaron, J. M. (2017). Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging. Journal of Agricultural and Food Chemistry, 65(22), 4439-4448. doi:10.1021/acs.jafc.7b01393Vega-Lugo, A.-C., & Lim, L.-T. (2009). Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Research International, 42(8), 933-940. doi:10.1016/j.foodres.2009.05.005Wang, L.-F., & Rhim, J.-W. (2016). Grapefruit seed extract incorporated antimicrobial LDPE and PLA films: Effect of type of polymer matrix. LWT, 74, 338-345. doi:10.1016/j.lwt.2016.07.066Yang, F., Xu, C. Y., Kotaki, M., Wang, S., & Ramakrishna, S. (2004). Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. Journal of Biomaterials Science, Polymer Edition, 15(12), 1483-1497. doi:10.1163/1568562042459733Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., … Coma, V. (2017). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165-199. doi:10.1111/1541-4337.12322Zhu, B., Li, J., He, Y., Yamane, H., Kimura, Y., Nishida, H., & Inoue, Y. (2004). Effect of steric hindrance on hydrogen-bonding interaction between polyesters and natural polyphenol catechin. Journal of Applied Polymer Science, 91(6), 3565-3573. doi:10.1002/app.1358

    Antimicrobial Properties of Ethylene Vinyl Alcohol/Epsilon-Polylysine Films and Their Application in Surimi Preservation

    Full text link
    [EN] Polymer films based on ethylene vinyl copolymers (EVOH) containing a 29 % (EVOH 29) and a 44 % molar percentage of ethylene (EVOH 44), and incorporating epsilon-polylysine (EPL) at 0 %, 1 %, 5 % and 10 % were successfully made by casting. The optical properties and the amount of EPL released from the films to phosphate buffer at pH 7.5 were evaluated, films showing great transparency and those of EVOH 29 copolymer releasing a greater amount of EPL. The antimicrobial properties of the resulting films were tested in vitro against different foodborne microorganisms and in vivo in surimi sticks. With regard to the antimicrobial capacity tested in vitro in liquid medium at 37 A degrees C and 4 A degrees C against Listeria monocytogenes and Escherichia coli over a period of 72 h, films showed a considerable growth inhibitory effect against both pathogens, more notably against L. monocytogenes, and being EVOH 29 more effective than EVOH 44 films. At 37 A degrees C, total growth inhibition was observed for EVOH 29 films incorporating 10 % EPL against both microorganisms whereas the copolymer EVOH 44 did show total inhibition against L. monocytogenes and the growth of E. coli was reduced by 6.64 log units. At 4 A degrees C, no film was able to inhibit completely bacterial growth. Scanning electron microscopy micrographs showed corrugated cell surfaces with blisters and bubbles, and collapse of the cells appearing shorter and more compact after treatment with EPL. Finally, the films were successfully used to increase the shelf life of surimi sticks. The results show the films developed have a great potential for active food packaging applications.The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, projects AGL2012-39920-C03-01, and fellowship funding for V. M.-G.Muriel-Galet, V.; Lopez-Carballo, G.; Gavara Clemente, R.; Hernández-Muñoz, P. (2014). Antimicrobial Properties of Ethylene Vinyl Alcohol/Epsilon-Polylysine Films and Their Application in Surimi Preservation. Food and Bioprocess Technology. 7(12):3548-3559. https://doi.org/10.1007/s11947-014-1363-1S35483559712Adams, M. R., & Moss, M. O. (2008). Food microbiology. UK: The Royal Society of Chemistry Cambridge.Aucejo, S., Catala, R., & Gavara, R. (2000). Interactions between water and EVOH food packaging films. Food Science and Technology International, 6(2), 159–164.Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. Journal of Food Science, 75(9), 557–563.Buchanan, R. L., & Doyle, M. P. (1997). Foodborne disease significance of Escherichia coli O157:H7 and other enterohemorrhagic E-coli. Food Technology, 51(10), 69–76.Chang, S.-S., Lu, W.-Y. W., Park, S.-H., & Kang, D.-H. (2010). Control of foodborne pathogens on ready-to-eat roast beef slurry by epsilon-polylysine. International Journal of Food Microbiology, 141(3), 236–241.Chang, Y., McLandsborough, L., & McClements, D. J. (2012). Cationic antimicrobial (epsilon-polylysine)-anionic polysaccharide (Pectin) interactions: influence of polymer charge on physical stability and antimicrobial efficacy. Journal of Agricultural and Food Chemistry, 60(7), 1837–1844.Chi-Zhang, Y. D., Yam, K. L., & Chikindas, M. L. (2004). Effective control of Listeria monocytogenes by combination of nisin formulated and slowly released into a broth system. International Journal of Food Microbiology, 90(1), 15–22.Coton, M., Denis, C., Cadot, P., & Coton, E. (2011). Biodiversity and characterization of aerobic spore-forming bacteria in surimi seafood products. Food Microbiology, 28(2), 252–260.FAO (2005) Further processing of fish Fisheries and Aquaculture Department, Rome. Updated 27 May 2005 Retrieved 14 March 2011.FDA (2004) Agency reponse letter GRAS Notice No. GRN 00135.Gambarin, P., Magnabosco, C., Losio, M. N., Pavoni, E., Gattuso, A., Arcangeli, G., et al. (2012). Listeria monocytogenes in ready-to-rat seafood and potential hazards for the consumers. International Journal of Microbiology, 2012, 497–635.Geornaras I, Yoon Y., Belk K. E., Smith G. C., Sofos J. N. (2007). Antimicrobial activity of epsilonpolylysine against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in various food extracts. Journal of Food Science, 72(8), M330–4.Gunlu, A., & Koyun, E. (2013). Effects of vacuum packaging and wrapping with chitosan-based edible film on the extension of the shelf life of sea bass (Dicentrarchus labrax) fillets in cold storage (4 A degrees C). Food and Bioprocess Technology, 6(7), 1713–1719.Hiraki, J. (1995). Basic and applied studies on ε-polylysine. Journal of Antibacterial Antifungal Agents Japan, 23, 349–493.Hiraki, J. (2000). ε-Polylysine, its development and utilization. Fine Chemistry, 29, 18–25.Hiraki, J., Ichikawa, T., Ninomiya, S., Seki, H., Uohama, K., Kimura, S., et al. (2003). Use of ADME studies to confirm the safety of epsilon-polylysine as a preservative in food. Regulatory Toxicology and Pharmacology, 37(2), 328–340.Ho, Y. T., Ishizaki, S., & Tanaka, M. (2000). Improving emulsifying activity of epsilon-polylysine by conjugation with dextran through the Maillard reaction. Food Chemistry, 68(4), 449–455.Huss, H. H., Jorgensen, L. V., & Vogel, B. F. (2000). Control options for Listeria monocytogenes in seafoods. International Journal of Food Microbiology, 62(3), 267–274.Kaneko, K., Hayashidani, H., Ohtomo, Y., Kosuge, J., Kato, M., Takahashi, K., et al. (1999). Bacterial contamination of ready-to-eat foods and fresh products in retail shops and food factories. Journal of Food Protection, 62(6), 644–649.Kang, E. T., Tan, K. L., Kato, K., Uyama, Y., & Ikada, Y. (1996). Surface modification and functionalization of polytetrafluoroethylene films. Macromolecules, 29(21), 6872–6879.Li, J., Han, Q., Chen, W., & Ye, L. (2012). Antimicrobial activity of Chinese bayberry extract for the preservation of surimi. Journal of the Science of Food and Agriculture, 92(11), 2358–2365.Lopez de Dicastillo, C., Nerin, C., Alfaro, P., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2011). Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract. Journal of Agricultural and Food Chemistry, 59(14), 7832–7840.Lopez-de-Dicastillo, C., Alonso, J. M., Catala, R., Gavara, R., & Hernandez-Munoz, P. (2010). Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) dilms. Journal of Agricultural and Food Chemistry, 58(20), 10958–10964.Lopez-de-Dicastillo, C., Pezo, D., Nerin, C., Lopez-Carballo, G., Catala, R., Gavara, R., et al. (2012). Reducing oxidation of foods through antioxidant active packaging based on ethyl vinyl alcohol and natural flavonoids. Packaging Technology and Science, 25(8), 457–466.M100-S22 (2012) Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement. Clinical and Laboratory Standards Institute. Advancing Quality in Health Care Testing. Vol. 32 No. 3. Replaces M100-S21 . Vol. 31 No. 1Mead, P. S., & Griffin, P. M. (1998). Escherichia coli O157:H7. Lancet, 352(9135), 1207–1212.Miya, S., Takahashi, H., Ishikawa, T., Fujii, T., & Kimura, B. (2010). Risk of Listeria monocytogenes xontamination of raw ready-to-eat seafood products available at retail outlets in Japan. Applied and Environmental Microbiology, 76(10), 3383–3386.Muriel-Galet, V., Cerisuelo, J. P., Lopez-Carballo, G., Lara, M., Gavara, R., & Hernandez-Munoz, P. (2012a). Development of antimicrobial films for microbiological control of packaged salad. International Journal of Food Microbiology, 157(2), 195–201.Muriel-Galet, V., Lopez-Carballo, G., Gavara, R., & Hernandez-Munoz, P. (2012b). Antimicrobial food packaging film based on the release of LAE from EVOH. International Journal of Food Microbiology, 157(2), 239–244.Muriel-Galet, V., Cerisuelo, J. P., Lopez-Carballo, G., Aucejo, S., Gavara, R., & Hernandez-Munoz, P. (2013a). Evaluation of EVOH-coated PP films with oregano essential oil and citral to improve the shelf-life of packaged salad. Food Control, 30(1), 137–143.Muriel-Galet, V., López-Carballo, G., Hernández-Muñoz, P., & Gavara, R. (2013b). Characterization of ethylene–vinyl alcohol copolymer containing lauril arginate (LAE) as material for active antimicrobial food packaging. Food Packaging and Shelf Life, 1, 10–17.Park, J. W. (2014). Surimi and surimi seafood. Boca Raton: CRC Press.Shima, S., & Sakai, H. (1977). Polylysine produced by Streptomyces. Agricultural and Biological Chemistry, 41(9), 1807–1809.Shima, S., Matsuoka, H., Iwamoto, T., & Sakai, H. (1984). Antimicrobial action of epsilon-poly-l-lysine. Journal of Antibiotics, 37(11), 1449–1455.Singh, R. K., & Balange, A. K. (2005). Characteristics of pink perch (Nemipterus japonicus) surimi at frozen temperature. Journal of Food Processing and Preservation, 29(1), 75–83.Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68(2), 408–420.Ting, H. Y., Ishizaki, S., & Tanaka, M. (1999). Epsilon-polylysine improves the quality of surimi products. Journal of Muscle Foods, 10(4), 279–294.Tzschoppe, M., Martin, A., & Beutin, L. (2012). A rapid procedure for the detection and isolation of enterohaemorrhagic Escherichia coli (EHEC) serogroup O26, O103, O111, O118, O121, O145 and O157 strains and the aggregative EHEC O104:H4 strain from ready-to-eat vegetables. International Journal of Food Microbiology, 152(1–2), 19–30.Uchida, E., Uyama, Y., & Ikada, Y. (1993). Sorption of low-molecular-weight anions into thin polycation layers grafted onto a film. Langmuir, 9(4), 1121–1124.Unalan, I. U., Ucar, K. D. A., Arcan, I., Korel, F., & Yemenicioglu, A. (2011). Antimicrobial potential of polylysine in edible films. Food Science and Technology Research, 17(4), 375–380.Venugopal, V., & Shahidi, F. (1995). Value-added products from underutilized fish species. Critical Reviews in Food Science and Nutrition, 35(5), 431–453.Zambuchini, B., Fiorini, D., Verdenelli, M. C., Orpianesi, C., & Ballini, R. (2008). Inhibition of microbiological activity during sole (Solea solea L.) chilled storage by applying ellagic and ascorbic acids. LWT--Food Science and Technology, 41(9), 1733–1738.Zinoviadou, K. G., Koutsoumanis, K. P., & Biliaderis, C. G. (2010). Physical and thermo-mechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloids, 24(1), 49–59
    corecore