68 research outputs found

    Safety and Pharmacokinetics of Motesanib in Combination with Panitumumab and Gemcitabine-Cisplatin in Patients with Advanced Cancer

    Get PDF
    Purpose. The aim of this study was to assess the safety and tolerability of motesanib (an orally administered small-molecule antagonist of vascular endothelial growth factor receptors 1, 2, and 3, platelet-derived growth factor receptor, and Kit) when administered in combination with panitumumab, gemcitabine, and cisplatin. Methods. This was an open-label, multicenter phase 1b study in patients with advanced solid tumors with an ECOG performance status ≤1 and for whom a gemcitabine/cisplatin regimen was indicated. Patients received motesanib (0 mg [control], 50 mg once daily [QD], 75 mg QD, 100 mg QD, 125 mg QD, or 75 mg twice daily [BID]) with panitumumab (9 mg/kg), gemcitabine (1250 mg/m2) and cisplatin (75 mg/m2) in 21-day cycles. The primary endpoint was the incidence of dose-limiting toxicities (DLTs). Results. Forty-one patients were enrolled and received treatment (including 8 control patients). One of eight patients in the 50 mg QD cohort and 5/11 patients in the 125 mg QD cohort experienced DLTs. The maximum tolerated dose was established as 100 mg QD. Among patients who received motesanib (n = 33), 29 had motesanib-related adverse events. Fourteen patients had serious motesanib-related events. Ten patients had motesanib-related venous thromboembolic events and three had motesanib-related arterial thromboembolic events, two of which were considered serious. One patient had a complete response and nine had partial responses as their best objective response. Conclusions. The combination of motesanib, panitumumab, and gemcitabine/cisplatin could not be administered consistently and, at the described doses and schedule, may be intolerable. However, encouraging antitumor activity was noted in some cases

    Safety and pharmacokinetics of motesanib in combination with gemcitabine and erlotinib for the treatment of solid tumors: a phase 1b study

    Get PDF
    Background: This phase 1b study assessed the maximum tolerated dose (MTD), safety, and pharmacokinetics of motesanib (a small-molecule antagonist of VEGF receptors 1, 2, and 3; platelet-derived growth factor receptor; and Kit) administered once daily (QD) or twice daily (BID) in combination with erlotinib and gemcitabine in patients with solid tumors. Methods: Patients received weekly intravenous gemcitabine (1000 mg/m2) and erlotinib (100 mg QD) alone (control cohort) or in combination with motesanib (50 mg QD, 75 mg BID, 125 mg QD, or 100 mg QD; cohorts 1-4); or erlotinib (150 mg QD) in combination with motesanib (100 or 125 mg QD; cohorts 5 and 6). Results: Fifty-six patients were enrolled and received protocol-specified treatment. Dose-limiting toxicities occurred in 11 patients in cohorts 1 (n = 2), 2 (n = 4), 3 (n = 3), and 6 (n = 2). The MTD of motesanib in combination with gemcitabine and erlotinib was 100 mg QD. Motesanib 125 mg QD was tolerable only in combination with erlotinib alone. Frequently occurring motesanib-related adverse events included diarrhea (n = 19), nausea (n = 18), vomiting (n = 13), and fatigue (n = 12), which were mostly of worst grade < 3. The pharmacokinetics of motesanib was not markedly affected by coadministration of gemcitabine and erlotinib, or erlotinib alone. Erlotinib exposure, however, appeared lower after coadministration with gemcitabine and/or motesanib. Of 49 evaluable patients, 1 had a confirmed partial response and 26 had stable disease. Conclusions: Treatment with motesanib 100 mg QD plus erlotinib and gemcitabine was tolerable. Motesanib 125 mg QD was tolerable only in combination with erlotinib alone.Dusan Kotasek, Niall Tebbutt, Jayesh Desai, Stephen Welch, Lillian L Siu, Sheryl McCoy, Yu-Nien Sun, Jessica Johnson, Adeboye H Adewoye and Timothy Pric

    A randomized, double-blind study of AMG 108 (a fully human monoclonal antibody to IL-1R1) in patients with osteoarthritis of the knee

    Get PDF
    INTRODUCTION: AMG 108 is a fully human, immunoglobulin subclass G2 (IgG2) monoclonal antibody that binds the human interleukin-1 (IL-1) receptor type 1, inhibiting the activity of IL-1a and IL-1b. In preclinical studies, IL-1 inhibition was shown to be beneficial in models of osteoarthritis (OA). The purpose of this two-part study was to evaluate the safety and pharmacokinetics (PK; Part A) and clinical effect (Part B) of AMG 108 in a double-blind, placebo-controlled, multiple-dose study in patients with OA of the knee. METHODS: In Part A, patients received placebo or AMG 108 subcutaneously (SC; 75 mg or 300 mg) or intravenously (IV; 100 mg or 300 mg) once every 4 weeks for 12 weeks; in Part B, patients received placebo or 300 mg AMG 108 SC, once every 4 weeks for 12 weeks. The clinical effect of AMG 108 was measured in Part B by using the Western Ontario and McMaster Universities (WOMAC) osteoarthritis index pain score. RESULTS: In Part A, 68 patients were randomized, and 64 received investigational product. In Part B, 160 patients were randomized, and 159 received investigational product. AMG 108 was well tolerated. Most adverse events (AEs), infectious AEs, serious AEs and infections, as well as withdrawals from the study due to AEs occurred at similar rates in both active and placebo groups. One death was reported in an 80-year-old patient (Part A, 300 mg IV AMG 108; due to complications of lobar pneumonia). AMG 108 serum concentration-time profiles exhibited nonlinear PK. The AMG 108 group in Part B had statistically insignificant but numerically greater improvement in pain compared with the placebo group, as shown by the WOMAC pain scores (median change, -63.0 versus -37.0, respectively). CONCLUSIONS: The safety profile of AMG 108 SC and IV was comparable with placebo in patients with OA of the knee. Patients who received AMG 108 showed statistically insignificant but numerically greater improvements in pain; however, minimal, if any, clinical benefit was observed. TRIAL REGISTRATION: This study is registered with ClinicalTrials.gov with the identifier NCT00110942.Stanley B Cohen, Susanna Proudman, Alan J Kivitz, Francis X Burch, John P Donohue, Deborah Burstein, Yu-Nien Sun, Christopher Banfield, Michael S Vincent, Liyun Ni, and Debra J Zac

    Exposure-Response and Population Pharmacokinetic Analyses of a Novel Subcutaneous Formulation of Daratumumab Administered to Multiple Myeloma Patients

    Get PDF
    We report the population pharmacokinetic (PK) and exposure-response analyses of a novel subcutaneous formulation of daratumumab (DARA) using data from 3 DARA subcutaneous monotherapy studies (PAVO Part 2, MMY1008, COLUMBA) and 1 combination therapy study (PLEIADES). Results were based on 5159 PK samples from 742 patients (DARA 1800 mg subcutaneously, n = 487 [monotherapy, n = 288; combination therapy, n = 199]; DARA 16 mg/kg intravenously, n = 255 [all monotherapy, in COLUMBA]; age, 33-92 years; weight, 28.6-147.6 kg). Subcutaneous and intravenous DARA monotherapies were administered once every week for cycles 1-2, once every 2 weeks for cycles 3-6, and once every 4 weeks thereafter (1 cycle is 28 days). The subcutaneous DARA combination therapy was administered with the adaptation of corresponding standard-of-care regimens. PK samples were collected between cycle 1 and cycle 12. Among monotherapy studies, throughout the treatment period, subcutaneous DARA provided similar/slightly higher trough concentrations (Ctrough) versus intravenous DARA, with lower maximum concentrations and smaller peak-to-trough fluctuations. The PK profile was consistent between subcutaneous DARA monotherapy and combination therapies. The exposure-response relationship between daratumumab PK and efficacy or safety end points was similar for subcutaneous and intravenous DARA. Although the ≤65-kg subgroup reported a higher incidence of neutropenia, no relationship was found between the incidence of neutropenia and exposure, which was attributed, in part, to the preexisting imbalance in neutropenia between subcutaneous DARA (45.5%) and intravenous DARA (19%) in patients ≤50 kg. A flat relationship was observed between body weight and any grade and at least grade 3 infections. The results support the DARA 1800-mg subcutaneous flat dose as an alternative to the approved intravenous DARA 16 mg/kg.The clinical studies and the analyses presented here were supported by research funding from Janssen Research & Development, LLC

    Exposure–response relationship of AMG 386 in combination with weekly paclitaxel in recurrent ovarian cancer and its implication for dose selection

    Get PDF
    To characterize exposure-response relationships of AMG 386 in a phase 2 study in advanced ovarian cancer for the facilitation of dose selection in future studies.A population pharmacokinetic model of AMG 386 (N = 141) was developed and applied in an exposure-response analysis using data from patients (N = 160) with recurrent ovarian cancer who received paclitaxel plus AMG 386 (3 or 10 mg/kg once weekly) or placebo. Reduction in the risk of progression or death with increasing exposure (steady-state area under the concentration-versus-time curve [AUC(ss)]) was assessed using Cox regression analyses. Confounding factors were tested in multivariate analysis. Alternative AMG 386 doses were explored with Monte Carlo simulations using population pharmacokinetic and parametric survival models.There was a trend toward increased PFS with increased AUC(ss) (hazard ratio [HR] for each one-unit increment in AUC(ss), 0.97; P = 0.097), suggesting that the maximum effect on prolonging PFS was not achieved at the highest dose tested (10 mg/kg). Among patients with AUC(ss) ≥ 9.6 mg h/mL, PFS was 8.1 months versus 5.7 months for AUC(ss) &lt; 9.6 mg h/mL and 4.6 months for placebo. No relationship between AUC(ss) and grade ≥ 3 adverse events was observed. Simulations predicted that AMG 386 15 mg/kg once weekly would result in an AUC(ss) ≥ 9.6 mg h/mL in &gt; 90% of patients with median PFS of 8.2 months versus 5.0 months for placebo (HR [15 mg/kg vs. placebo], 0.56).Increased exposure to AMG 386 was associated with improved clinical outcomes in recurrent ovarian cancer, supporting the evaluation of a higher dose in future studies

    Temporal Coordination of Gene Networks by Zelda in the Early Drosophila Embryo

    Get PDF
    In past years, much attention has focused on the gene networks that regulate early developmental processes, but less attention has been paid to how multiple networks and processes are temporally coordinated. Recently the discovery of the transcriptional activator Zelda (Zld), which binds to CAGGTAG and related sequences present in the enhancers of many early-activated genes in Drosophila, hinted at a mechanism for how batteries of genes could be simultaneously activated. Here we use genome-wide binding and expression assays to identify Zld target genes in the early embryo with the goal of unraveling the gene circuitry regulated by Zld. We found that Zld binds to genes involved in early developmental processes such as cellularization, sex determination, neurogenesis, and pattern formation. In the absence of Zld, many target genes failed to be activated, while others, particularly the patterning genes, exhibited delayed transcriptional activation, some of which also showed weak and/or sporadic expression. These effects disrupted the normal sequence of patterning-gene interactions and resulted in highly altered spatial expression patterns, demonstrating the significance of a timing mechanism in early development. In addition, we observed prevalent overlap between Zld-bound regions and genomic “hotspot” regions, which are bound by many developmental transcription factors, especially the patterning factors. This, along with the finding that the most over-represented motif in hotspots, CAGGTA, is the Zld binding site, implicates Zld in promoting hotspot formation. We propose that Zld promotes timely and robust transcriptional activation of early-gene networks so that developmental events are coordinated and cell fates are established properly in the cellular blastoderm embryo
    corecore