335 research outputs found

    Fuzzballs and Random Matrices

    Full text link
    Black holes are believed to have the fast scrambling properties of random matrices. If the fuzzball proposal is to be a viable model for quantum black holes, it should reproduce this expectation. This is considered challenging, because it is natural for the modes on a fuzzball microstate to follow Poisson statistics. In a previous paper, we noted a potential loophole here, thanks to the modes depending not just on the nn-quantum number, but also on the JJ-quantum numbers of the compact dimensions. For a free scalar field ϕ\phi, by imposing a Dirichlet boundary condition ϕ=0\phi=0 at the stretched horizon, we showed that this JJ-dependence leads to a linear ramp in the Spectral Form Factor (SFF). Despite this, the status of level repulsion remained mysterious. In this letter, motivated by the profile functions of BPS fuzzballs, we consider a generic profile ϕ=ϕ0(θ)\phi = \phi_0(\theta) instead of ϕ=0\phi=0 at the stretched horizon. For various notions of genericity (eg. when the Fourier coefficients of ϕ0(θ)\phi_0(\theta) are suitably Gaussian distributed), we find that the JJ-dependence of the spectrum exhibits striking evidence of level repulsion, along with the linear ramp. We also find that varying the profile leads to natural interpolations between Poisson and Wigner-Dyson(WD)-like spectra. The linear ramp in our previous work can be understood as arising via an extreme version of level repulsion in such a limiting spectrum. We also explain how the stretched horizon/fuzzball is different in these aspects from simply putting a cut-off in flat space or AdS (ie., without a horizon).Comment: v2: minor corrections, improvements in wordin

    What is the Simplest Linear Ramp?

    Full text link
    We discuss conditions under which a deterministic sequence of real numbers, interpreted as the set of eigenvalues of a Hamiltonian, can exhibit features usually associated to random matrix spectra. A key diagnostic is the spectral form factor (SFF) -- a linear ramp in the SFF is often viewed as a signature of random matrix behavior. Based on various explicit examples, we observe conditions for linear and power law ramps to arise in deterministic spectra. We note that a very simple spectrum with a linear ramp is EnlognE_n \sim \log n. Despite the presence of ramps, these sequences do notnot exhibit conventional level repulsion, demonstrating that the lore about their concurrence needs refinement. However, when a small noise correction is added to the spectrum, they lead to clear level repulsion as well as the (linear) ramp. We note some remarkable features of logarithmic spectra, apart from their linear ramps: they are closely related to normal modes of black hole stretched horizons, and their partition function with argument s=β+its=\beta+it is the Riemann zeta function ζ(s)\zeta(s). An immediate consequence is that the spectral form factor is simply ζ(it)2\sim |\zeta(it)|^2. Our observation that log spectra have a linear ramp, is closely related to the Lindel\"of hypothesis on the growth of the zeta function. With elementary numerics, we check that the slope of a best fit line through ζ(it)2|\zeta(it)|^2 on a log-log plot is indeed 11, to the fourth decimal. We also note that truncating the Riemann zeta function sum at a finite integer NN causes the would-be-eternal ramp to end on a plateau.Comment: 16 pages, many plots, v2: minor corrections, reference

    A case of rocky mountain spotted fever without eschar as a cause of pyrexia with multiple organ failure

    Get PDF
    Rocky mountain spotted fever (RMSF) is a rickettsia disease frequently reported from North America and Europe and transmitted by tick bite. This disease is very rare in India and other parts of South East Asia. Fever with rash and thrombocytopenia are the hallmark clinical presentations of viral hemorrhagic fever but other diseases like malaria, typhoid, Leptospira and rickettsia diseases should also be considered in differential diagnosis. Knowledge of geographical distribution, evidence of exposure to the vector and a high degree of clinical suspicion of rickettsia diseases are very important for early differentiation from other diseases to prevent lethal complications and institute initial treatment. We report a rare case of rocky mountain spotted fever (RMSF) from New Delhi, which was confirmed by specific indirect immunofluorescence assay (IIF).

    A rare case of progressive disseminated histoplasmosis with bone marrow involvement in an immunocompetent patient

    Get PDF
    Histoplasmosis is a rare entity in India and very few cases have been reported from eastern region of India like West Bengal and rarely cases from southern India as well. We hereby report a case of progressive disseminated histoplasmosis (PDH) from a non-endemic region of India (Eastern Utter Pradesh) and that too in an immunocompetent individual.

    Molecular estimation of neurodegeneration pseudotime in older brains.

    Get PDF
    The temporal molecular changes that lead to disease onset and progression in Alzheimer\u27s disease (AD) are still unknown. Here we develop a temporal model for these unobserved molecular changes with a manifold learning method applied to RNA-Seq data collected from human postmortem brain samples collected within the ROS/MAP and Mayo Clinic RNA-Seq studies. We define an ordering across samples based on their similarity in gene expression and use this ordering to estimate the molecular disease stage-or disease pseudotime-for each sample. Disease pseudotime is strongly concordant with the burden of tau (Braak score, P = 1.0 × 10-5), Aβ (CERAD score, P = 1.8 × 10-5), and cognitive diagnosis (P = 3.5 × 10-7) of late-onset (LO) AD. Early stage disease pseudotime samples are enriched for controls and show changes in basic cellular functions. Late stage disease pseudotime samples are enriched for late stage AD cases and show changes in neuroinflammation and amyloid pathologic processes. We also identify a set of late stage pseudotime samples that are controls and show changes in genes enriched for protein trafficking, splicing, regulation of apoptosis, and prevention of amyloid cleavage pathways. In summary, we present a method for ordering patients along a trajectory of LOAD disease progression from brain transcriptomic data

    Dynamics of Hot QCD Matter -- Current Status and Developments

    Full text link
    The discovery and characterization of hot and dense QCD matter, known as Quark Gluon Plasma (QGP), remains the most international collaborative effort and synergy between theorists and experimentalists in modern nuclear physics to date. The experimentalists around the world not only collect an unprecedented amount of data in heavy-ion collisions, at Relativistic Heavy Ion Collider (RHIC), at Brookhaven National Laboratory (BNL) in New York, USA, and the Large Hadron Collider (LHC), at CERN in Geneva, Switzerland but also analyze these data to unravel the mystery of this new phase of matter that filled a few microseconds old universe, just after the Big Bang. In the meantime, advancements in theoretical works and computing capability extend our wisdom about the hot-dense QCD matter and its dynamics through mathematical equations. The exchange of ideas between experimentalists and theoreticians is crucial for the progress of our knowledge. The motivation of this first conference named "HOT QCD Matter 2022" is to bring the community together to have a discourse on this topic. In this article, there are 36 sections discussing various topics in the field of relativistic heavy-ion collisions and related phenomena that cover a snapshot of the current experimental observations and theoretical progress. This article begins with the theoretical overview of relativistic spin-hydrodynamics in the presence of the external magnetic field, followed by the Lattice QCD results on heavy quarks in QGP, and finally, it ends with an overview of experiment results.Comment: Compilation of the contributions (148 pages) as presented in the `Hot QCD Matter 2022 conference', held from May 12 to 14, 2022, jointly organized by IIT Goa & Goa University, Goa, Indi

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    MUSiC : a model-unspecific search for new physics in proton-proton collisions at root s=13TeV

    Get PDF
    Results of the Model Unspecific Search in CMS (MUSiC), using proton-proton collision data recorded at the LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb(-1), are presented. The MUSiC analysis searches for anomalies that could be signatures of physics beyond the standard model. The analysis is based on the comparison of observed data with the standard model prediction, as determined from simulation, in several hundred final states and multiple kinematic distributions. Events containing at least one electron or muon are classified based on their final state topology, and an automated search algorithm surveys the observed data for deviations from the prediction. The sensitivity of the search is validated using multiple methods. No significant deviations from the predictions have been observed. For a wide range of final state topologies, agreement is found between the data and the standard model simulation. This analysis complements dedicated search analyses by significantly expanding the range of final states covered using a model independent approach with the largest data set to date to probe phase space regions beyond the reach of previous general searches.Peer reviewe
    corecore