45 research outputs found

    Differential gene expression according to race and host plant in the pea aphid

    Get PDF
    Host-race formation in phytophagous insects is thought to provide the opportunity for local adaptation and subsequent ecological speciation. Studying gene expression differences among host-races may help to identify phenotypes under (or resulting from) divergent selection and their genetic, molecular and physiological bases. The pea aphid (Acyrthosiphon pisum) comprises host-races specialising on numerous plants in the Fabaceae, and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. In this study, we examine transcriptome-wide gene expression both in response to environment and across pea aphid races selected to cover the range of genetic divergence reported in this species complex. We identify changes in expression in response to host-plant, indicating the importance of gene expression in aphid-plant interactions. Races can be distinguished on the basis of gene expression, and higher numbers of differentially expressed genes are apparent between more divergent races; these expression differences between host-races may result from genetic drift and reproductive isolation, and possibly divergent selection. Expression differences related to plant adaptation include a sub-set of chemosensory and salivary genes. Genes showing expression changes in response to host plant do not make up a large portion of between-race expression differences, providing confirmation of previous studies’ findings that genes involved in expression differences between diverging populations or species are not necessarily those showing initial plasticity in the face of environmental change

    Fast Evolution and Lineage-Specific Gene Family Expansions of Aphid Salivary Effectors Driven by Interactions with Host-Plants

    Get PDF
    Effector proteins play crucial roles in plant-parasite interactions by suppressing plant defenses and hijacking plant physiological responses to facilitate parasite invasion and propagation. Although effector proteins have been characterized in many microbial plant pathogens, their nature and role in adaptation to host plants are largely unknown in insect herbivores. Aphids rely on salivary effector proteins injected into the host plants to promote phloem sap uptake. Therefore, gaining insight into the repertoire and evolution of aphid effectors is key to unveiling the mechanisms responsible for aphid virulence and host plant specialization. With this aim in mind, we assembled catalogues of putative effectors in the legume specialist aphid, Acyrthosiphon pisum, using transcriptomics and proteomics approaches. We identified 3,603 candidate effector genes predicted to be expressed in A. pisum salivary glands (SGs), and 740 of which displayed up-regulated expression in SGs in comparison to the alimentary tract. A search for orthologs in 17 arthropod genomes revealed that SG-up-regulated effector candidates of A. pisum are enriched in aphid-specific genes and tend to evolve faster compared with the whole gene set. We also found that a large fraction of proteins detected in the A. pisum saliva belonged to three gene families, of which certain members show evidence consistent with positive selection. Overall, this comprehensive analysis suggests that the large repertoire of effector candidates in A. pisum constitutes a source of novelties promoting plant adaptation to legumes

    Parasitic modulation of host development by ubiquitin-independent protein degradation

    Get PDF
    Certain obligate parasites induce complex and substantial phenotypic changes in their hosts in ways that favor their transmission to other trophic levels. However, the mechanisms underlying these changes remain largely unknown. Here we demonstrate how SAP05 protein effectors from insect-vectored plant pathogenic phytoplasmas take control of several plant developmental processes. These effectors simultaneously prolong the host lifespan and induce witches’ broom-like proliferations of leaf and sterile shoots, organs colonized by phytoplasmas and vectors. SAP05 acts by mediating the concurrent degradation of SPL and GATA developmental regulators via a process that relies on hijacking the plant ubiquitin receptor RPN10 independent of substrate ubiquitination. RPN10 is highly conserved among eukaryotes, but SAP05 does not bind insect vector RPN10. A two-amino-acid substitution within plant RPN10 generates a functional variant that is resistant to SAP05 activities. Therefore, one effector protein enables obligate parasitic phytoplasmas to induce a plethora of developmental phenotypes in their hosts

    Advanced backcross QTL analysis and comparative mapping with RIL QTL studies and GWAS provide an overview of QTL and marker haplotype diversity for resistance to Aphanomyces root rot in pea (Pisum sativum)

    Get PDF
    Aphanomyces euteiches is the most damaging soilborne pea pathogen in France. Breeding of pea resistant varieties combining a diversity of quantitative trait loci (QTL) is a promising strategy considering previous research achievements in dissecting polygenic resistance to A. euteiches. The objective of this study was to provide an overview of the diversity of QTL and marker haplotypes for resistance to A. euteiches, by integrating a novel QTL mapping study in advanced backcross (AB) populations with previous QTL analyses and genome-wide association study (GWAS) using common markers. QTL analysis was performed in two AB populations derived from the cross between the susceptible spring pea variety “Eden” and the two new sources of partial resistance “E11” and “LISA”. The two AB populations were genotyped using 993 and 478 single nucleotide polymorphism (SNP) markers, respectively, and phenotyped for resistance to A. euteiches in controlled conditions and in infested fields at two locations. GWAS and QTL mapping previously reported in the pea-Aphanomyces collection and from four recombinant inbred line (RIL) populations, respectively, were updated using a total of 1,850 additional markers, including the markers used in the Eden x E11 and Eden x LISA populations analysis. A total of 29 resistance-associated SNPs and 171 resistance QTL were identified by GWAS and RIL or AB QTL analyses, respectively, which highlighted 10 consistent genetic regions confirming the previously reported QTL. No new consistent resistance QTL was detected from both Eden x E11 and Eden x LISA AB populations. However, a high diversity of resistance haplotypes was identified at 11 linkage disequilibrium (LD) blocks underlying consistent genetic regions, especially in 14 new sources of resistance from the pea-Aphanomyces collection. An accumulation of favorable haplotypes at these 11 blocks was confirmed in the most resistant pea lines of the collection. This study provides new SNP markers and rare haplotypes associated with the diversity of Aphanomyces root rot resistance QTL investigated, which will be useful for QTL pyramiding strategies to increase resistance levels in future pea varieties

    Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species

    Get PDF
    Background: The prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species. Results: To investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes. Conclusions: Previous research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution

    Characterization of two fungal lipoxygenases expressed in Aspergillus oryzae.

    No full text
    International audienceTwo fungal lipoxygenase genes were cloned from a rice pathogen, Magnaporthe salvinii, and the take-all fungus, Gaeumannomyces graminis var. tritici, and successfully expressed in Aspergillus oryzae in secreted form. The lipoxygenases expressed, termed MLOX and GLOX, were purified and characterized to evaluate suitability for industrial applications. Both enzymes were active broadly at pH 4-11 and had optimum temperatures around 60 °C, but they were largely different in substrate specificity. Where MLOX was active broadly on arachidonic acid, EPA and DHA, and even on derivatives of fatty acids, such as methyl linoleate or linoleoyl alcohol, GLOX was more specific to linoleic acid and linolenic acid. The most remarkable difference between the two fungal LOXs was the positional and stereo-specificity of oxygenation reactions on polyunsaturated fatty acids. When using linoleic acid as the substrate, the product of MLOX was 9S-hydroperoxy-(E,Z)-octadecadienoic acid (9S(E,Z)-HPODE), on the other hand, the product of GLOX was 13R(E,Z)-HPODE. The enzymes were evaluated for a couple of potential applications and found to be effective on bleaching colored compounds such as carotenoids

    The promises and challenges of research on plant–insect–microbe interactions

    No full text
    International audiencePreface of the special issue on plant-insect-microbe interaction

    Molecular Mechanisms Underlying Host Plant Specificity in Aphids

    No full text
    International audienceAphids are serious pests of agricultural and ornamental plants and important model systems for hemipteran–plant interactions. The long evolutionary history of aphids with their host plants has resulted in a variety of systems that provide insight into the different adaptation strategies of aphids to plants and vice versa. In the past, various plant–aphid interactions have been documented, but lack of functional tools has limited molecular studies on the mechanisms of plant–aphid interactions. Recent technological advances have begun to reveal plant–aphid interactions at the molecular level and to increase our knowledge of the mechanisms of aphid adaptation or specialization to different host plants. In this article, we compile and analyze available information on plant–aphid interactions, discuss the limitations of current knowledge, and argue for new research directions. We advocate for more work that takes advantage of natural systems and recently established molecular techniques to obtain a comprehensive view of plant–aphid interaction mechanisms

    Plant–insect interactions under bacterial influence: ecological implications and underlying mechanisms

    No full text
    International audiencePlants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant–insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs betweenbelow- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant–insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant–insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted
    corecore