9 research outputs found

    Production of thermostable multiple enzymes from <i>Bacillus amyloliquefaciens</i> KUB29

    No full text
    <p>A strain of <i>Bacillus amyloliquefaciens</i> KUB29 was identified by 16S ribosomal RNA sequencing (Genbank: MF772779.1). Production of thermostable protease, amylase and lipase were done by the isolated strain. The produced enzymes were partially purified by ammonium precipitation followed by dialysis process. Protease and lipase enzymes are effectively used in bio-oil extraction from proteinaceous sample followed by transesterification to produce methyl ester. Amylase enzyme is widely used in food and laundry industry. The produced enzymes are active at thermophilic condition of 55 °C. Use of these enzymes in biofuel production process will make the process cleaner and greener.</p

    Inner plant values: Diversity, colonization and benefits from endophytic bacteria

    No full text
    One of the most exciting scientific advances in recent decades has been the realization that the diverse and immensely active microbial communities are not only 'passengers' with plants, but instead play an important role in plant growth, development and resistance to biotic and abiotic stresses. A picture is emerging where plant roots act as 'gatekeepers' to screen soil bacteria from the rhizosphere and rhizoplane. This typically results in root endophytic microbiome dominated by Proteobacteria, Actinobacteria and to a lesser extent Bacteroidetes and Firmicutes, but Acidobacteria and Gemmatimonadetes being almost depleted. A synthesis of available data suggest that motility, plant cell-wall degradation ability and reactive oxygen species scavenging seem to be crucial traits for successful endophytic colonization and establishment of bacteria. Recent studies provide solid evidence that these bacteria serve host functions such as improving of plant nutrients through acquisition of nutrients from soil and nitrogen fixation in leaves. Additionally, some endophytes can engage 'priming' plants which elicit a faster and stronger plant defense once pathogens attack. Due to these plant growth-promoting effects, endophytic bacteria are being widely explored for their use in the improvement of crop performance. Updating the insights into the mechanism of endophytic bacterial colonization and interactions with plants is an important step in potentially manipulating endophytic bacteria/microbiome for viable strategies to improve agricultural production

    The intercalated disc: a mechanosensing signalling node in cardiomyopathy

    No full text
    corecore