27 research outputs found

    Evaluation of pooling operations in convolutional architectures for drug-drug interaction extraction

    Get PDF
    Background: Deep Neural Networks (DNN), in particular, Convolutional Neural Networks (CNN), has recently achieved state-of-art results for the task of Drug-Drug Interaction (DDI) extraction. Most CNN architectures incorporate a pooling layer to reduce the dimensionality of the convolution layer output, preserving relevant features and removing irrelevant details. All the previous CNN based systems for DDI extraction used max-pooling layers. Results: In this paper, we evaluate the performance of various pooling methods (in particular max-pooling, average-pooling and attentive pooling), as well as their combination, for the task of DDI extraction. Our experiments show that max-pooling exhibits a higher performance in F1-score (64.56%) than attentive pooling (59.92%) and than average-pooling (58.35%). Conclusions: Max-pooling outperforms the others alternatives because is the only one which is invariant to the special pad tokens that are appending to the shorter sentences known as padding. Actually, the combination of max-pooling and attentive pooling does not improve the performance as compared with the single max-pooling technique.Publication of this article was supported by the Research Program of the Ministry of Economy and Competitiveness - Government of Spain, (DeepEMR project TIN2017-87548-C2-1-R) and the TEAM project (Erasmus Mundus Action 2-Strand 2 Programme) funded by the European Commission

    The reporting quality of natural language processing studies: systematic review of studies of radiology reports.

    Get PDF
    BACKGROUND: Automated language analysis of radiology reports using natural language processing (NLP) can provide valuable information on patients' health and disease. With its rapid development, NLP studies should have transparent methodology to allow comparison of approaches and reproducibility. This systematic review aims to summarise the characteristics and reporting quality of studies applying NLP to radiology reports. METHODS: We searched Google Scholar for studies published in English that applied NLP to radiology reports of any imaging modality between January 2015 and October 2019. At least two reviewers independently performed screening and completed data extraction. We specified 15 criteria relating to data source, datasets, ground truth, outcomes, and reproducibility for quality assessment. The primary NLP performance measures were precision, recall and F1 score. RESULTS: Of the 4,836 records retrieved, we included 164 studies that used NLP on radiology reports. The commonest clinical applications of NLP were disease information or classification (28%) and diagnostic surveillance (27.4%). Most studies used English radiology reports (86%). Reports from mixed imaging modalities were used in 28% of the studies. Oncology (24%) was the most frequent disease area. Most studies had dataset size > 200 (85.4%) but the proportion of studies that described their annotated, training, validation, and test set were 67.1%, 63.4%, 45.7%, and 67.7% respectively. About half of the studies reported precision (48.8%) and recall (53.7%). Few studies reported external validation performed (10.8%), data availability (8.5%) and code availability (9.1%). There was no pattern of performance associated with the overall reporting quality. CONCLUSIONS: There is a range of potential clinical applications for NLP of radiology reports in health services and research. However, we found suboptimal reporting quality that precludes comparison, reproducibility, and replication. Our results support the need for development of reporting standards specific to clinical NLP studies

    FLAP: a framework for linking free-text addresses to the Ordnance Survey Unique Property Reference Number database

    Get PDF
    Introduction: Linking free-text addresses to unique identifiers in a structural address database [the Ordnance Survey unique property reference number (UPRN) in the United Kingdom (UK)] is a necessary step for downstream geospatial analysis in many digital health systems, e.g., for identification of care home residents, understanding housing transitions in later life, and informing decision making on geographical health and social care resource distribution. However, there is a lack of open-source tools for this task with performance validated in a test data set. Methods: In this article, we propose a generalisable solution (A Framework for Linking free-text Addresses to Ordnance Survey UPRN database, FLAP) based on a machine learning–based matching classifier coupled with a fuzzy aligning algorithm for feature generation with better performance than existing tools. The framework is implemented in Python as an Open Source tool (available at Link). We tested the framework in a real-world scenario of linking individual’s (n = 771,588) addresses recorded as free text in the Community Health Index (CHI) of National Health Service (NHS) Tayside and NHS Fife to the Unique Property Reference Number database (UPRN DB). Results: We achieved an adjusted matching accuracy of 0.992 in a test data set randomly sampled (n = 3, 876) from NHS Tayside and NHS Fife CHI addresses. FLAP showed robustness against input variations including typographical errors, alternative formats, and partially incorrect information. It has also improved usability compared to existing solutions allowing the use of a customised threshold of matching confidence and selection of top n candidate records. The use of machine learning also provides better adaptability of the tool to new data and enables continuous improvement. Discussion: In conclusion, we have developed a framework, FLAP, for linking freetext UK addresses to the UPRN DB with good performance and usability in a realworld task

    SARS-CoV-2 viral load in nasopharyngeal swabs is not an independent predictor of unfavorable outcome

    Get PDF
    The aim was to assess the ability of nasopharyngeal SARS-CoV-2 viral load at first patient’s hospital evaluation to predict unfavorable outcomes. We conducted a prospective cohort study including 321 adult patients with confirmed COVID-19 through RT-PCR in nasopharyngeal swabs. Quantitative Synthetic SARS-CoV-2 RNA cycle threshold values were used to calculate the viral load in log10 copies/mL. Disease severity at the end of follow up was categorized into mild, moderate, and severe. Primary endpoint was a composite of intensive care unit (ICU) admission and/or death (n = 85, 26.4%). Univariable and multivariable logistic regression analyses were performed. Nasopharyngeal SARS-CoV-2 viral load over the second quartile (≥ 7.35 log10 copies/mL, p = 0.003) and second tertile (≥ 8.27 log10 copies/mL, p = 0.01) were associated to unfavorable outcome in the unadjusted logistic regression analysis. However, in the final multivariable analysis, viral load was not independently associated with an unfavorable outcome. Five predictors were independently associated with increased odds of ICU admission and/or death: age ≥ 70 years, SpO2, neutrophils > 7.5 × 103/µL, lactate dehydrogenase ≥ 300 U/L, and C-reactive protein ≥ 100 mg/L. In summary, nasopharyngeal SARS-CoV-2 viral load on admission is generally high in patients with COVID-19, regardless of illness severity, but it cannot be used as an independent predictor of unfavorable clinical outcome

    Dendritic cell deficiencies persist seven months after SARS-CoV-2 infection

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin β7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    A multi-BERT hybrid system for named entity recognition in Spanish radiology reports

    No full text
    The present work describes the proposed methods by the EdIE-KnowLab team in Information Extraction Task of CLEF eHealth 2021, SpRadIE Task 1. This task focuses on detecting and classifying relevant mentions in ultrasonography reports. The architecture developed is an ensemble of multiple BERT (multi-BERT) systems, one per each entity type, together with a generated dictionary and available off-the-shelf tools, Google Healthcare Natural Language API and GATECloud's Measurement Expression Annotator system, applied to the documents translated into English with word alignment from the neural machine translation tool, Microsoft Translator API. Our best system configuration (multi-BERT with a dictionary) achieves 85.51% and 80.04% F1 for Lenient and Exact metrics, respectively. Thus, the system ranked first out of 17 submissions from 7 teams that participated in this shared task. Our system also achieved the best Recall merging the previous predictions to the results given by English-translated texts and cross-lingual word alignment (83.87% Lenient match and 78.71% Exact match). The overall results demonstrate the potential of pre-trained language models and cross-lingual word alignment for limited corpus and low-resource NER in the clinical domain

    A multi-BERT hybrid system for named entity recognition in Spanish radiology reports

    No full text
    The present work describes the proposed methods by the EdIE-KnowLab team in Information Extraction Task of CLEF eHealth 2021, SpRadIE Task 1. This task focuses on detecting and classifying relevant mentions in ultrasonography reports. The architecture developed is an ensemble of multiple BERT (multi-BERT) systems, one per each entity type, together with a generated dictionary and available off-the-shelf tools, Google Healthcare Natural Language API and GATECloud's Measurement Expression Annotator system, applied to the documents translated into English with word alignment from the neural machine translation tool, Microsoft Translator API. Our best system configuration (multi-BERT with a dictionary) achieves 85.51% and 80.04% F1 for Lenient and Exact metrics, respectively. Thus, the system ranked first out of 17 submissions from 7 teams that participated in this shared task. Our system also achieved the best Recall merging the previous predictions to the results given by English-translated texts and cross-lingual word alignment (83.87% Lenient match and 78.71% Exact match). The overall results demonstrate the potential of pre-trained language models and cross-lingual word alignment for limited corpus and low-resource NER in the clinical domain
    corecore