93 research outputs found

    Structure of 13^{13}Be probed via secondary beam reactions

    Full text link
    The low-lying level structure of the unbound neutron-rich nucleus 13^{13}Be has been investigated via breakup on a carbon target of secondary beams of 14,15^{14,15}B at 35 MeV/nucleon. The coincident detection of the beam velocity 12^{12}Be fragments and neutrons permitted the invariant mass of the 12^{12}Be+nn and 12^{12}Be+nn+nn systems to be reconstructed. In the case of the breakup of 15^{15}B, a very narrow structure at threshold was observed in the 12^{12}Be+nn channel. Contrary to earlier stable beam fragmentation studies which identified this as a strongly interacting ss-wave virtual state in 13^{13}Be, analysis here of the 12^{12}Be+nn+nn events demonstrated that this was an artifact resulting from the sequential-decay of the 14^{14}Be(2+^+) state. Single-proton removal from 14^{14}B was found to populate a broad low-lying structure some 0.70 MeV above the neutron-decay threshold in addition to a less prominent feature at around 2.4 MeV. Based on the selectivity of the reaction and a comparison with (0-3)ℏω\hbar\omega shell-model calculations, the low-lying structure is concluded to most probably arise from closely spaced Jπ^\pi=1/2+^+ and 5/2+^+ resonances (Er_r=0.40±\pm0.03 and 0.85−0.11+0.15^{+0.15}_{-0.11} MeV), whilst the broad higher-lying feature is a second 5/2+^+ level (Er_r=2.35±\pm0.14 MeV). Taken in conjunction with earlier studies, it would appear that the lowest 1/2+^+ and 1/2−^- levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical Review

    New gas-filled mode of the large-acceptance spectrometer VAMOS

    Get PDF
    SpectromĂštre VAMOSA new gas-filled operation mode of the large-acceptance spectrometer VAMOS at GANIL is reported. A beam rejection factor greater than 1010 is obtained for the 40Ca+150Sm system at 196 MeV. The unprecedented transmission efficiency for the evaporation residues produced in this reaction is estimated to be around 80% for Âźxn channels and above 95% for xnyp channels. A detailed study of the performance of the gasfilled VAMOS and future developments are discussed. This new operation mode opens avenues to explore the potential of fusion reactions in various kinematics

    Isomeric states in 253^{253}No

    Get PDF
    6 pagesInternational audienceIsomeric states in 253No have been investigated by conversion-electron and gamma-ray spectroscopy with the GABRIELA detection system. The 31 micro second isomer reported more than 30 years ago is found to decay to the ground state of 253No by the emission of a 167 keV M2 transition. The spin and parity of this low-lying isomeric state are established to be 5/2+. The presence of another longer-lived isomeric state is also discussed

    Single-Proton Removal Reaction Study of 16B

    Get PDF
    The low-lying level structure of the unbound system 16^{16}B has been investigated via single-proton removal from a 35 MeV/nucleon 17^{17}C beam. The coincident detection of the beam velocity 15^{15}B fragment and neutron allowed the relative energy of the in-flight decay of 16^{16}B to be reconstructed. The resulting spectrum exhibited a narrow peak some 85 keV above threshold. It is argued that this feature corresponds to a very narrow (Γâ‰Ș\Gamma \ll 100 keV) resonance, or an unresolved multiplet, with a dominant π(p3/2)−1⊗Μ(d5/23)J=3/2+\pi (p_{3/2})^{-1} \otimes \nu (d_{5/2}^3)_{J=3/2^+} + π(p3/2)−1⊗Μ(d5/22,s1/2)J=3/2+\pi (p_{3/2})^{-1} \otimes \nu (d_{5/2}^2,s_{1/2})_{J=3/2^+} configuration which decays by d-wave neutron emission.Comment: 16 pages, 5 figures, 1 table, submitted to Phys. Lett.

    Elements Discrimination in the Study of Super-Heavy Elements using an Ionization Chamber

    Full text link
    Dedicated ionization chamber was built and installed to measure the energy loss of very heavy nuclei at 2.7 MeV/u produced in fusion reactions in inverse kinematics (beam of 208Pb). After going through the ionization chamber, products of reactions on 12C, 18O targets are implanted in a Si detector. Their identification through their alpha decay chain is ambiguous when their half-life is short. After calibration with Pb and Th nuclei, the ionization chamber signal allowed us to resolve these ambiguities. In the search for rare super-heavy nuclei produced in fusion reactions in inverse or symmetric kinematics, such a chamber will provide direct information on the nuclear charge of each implanted nucleus.Comment: submitted to NIMA, 10 pages+4 figures, Latex, uses elsart.cls and grahpic

    Nucleon-induced reactions at intermediate energies: New data at 96 MeV and theoretical status

    Full text link
    Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.Comment: 21 pages, 28 figure

    Helium Clustering in Neutron-Rich Be Isotopes

    Get PDF
    Measurements of the helium-cluster breakup and neutron removal cross sections for neutron-rich Be isotopes A=10-12,14 are presented. These have been studied in the 30 to 42 MeV/u energy range where reaction measurements are proposed to be sensitive to the cluster content of the ground-state wave-function. These measurements provide a comprehensive survey of the decay processes of the Be isotopes by which the valence neutrons are removed revealing the underlying alpha-alpha core-cluster structure. The measurements indicate that clustering in the Be isotopes remains important up to the drip-line nucleus 14^Be and that the dominant helium-cluster structure in the neutron-rich Be isotopes corresponds to alpha-Xn-alpha.Comment: 5 pages, 2 tables and 3 figure

    Measurements of sideward flow around the balance energy

    Full text link
    Sideward flow values have been determined with the INDRA multidetector for Ar+Ni, Ni+Ni and Xe+Sn systems studied at GANIL in the 30 to 100 A.MeV incident energy range. The balance energies found for Ar+Ni and Ni+Ni systems are in agreement with previous experimental results and theoretical calculations. Negative sideward flow values have been measured. The possible origins of such negative values are discussed. They could result from a more important contribution of evaporated particles with respect to the contribution of promptly emitted particles at mid-rapidity. But effects induced by the methods used to reconstruct the reaction plane cannot be totally excluded. Complete tests of these methods are presented and the origins of the ``auto-correlation'' effect have been traced back. For heavy fragments, the observed negative flow values seem to be mainly due to the reaction plane reconstruction methods. For light charged particles, these negative values could result from the dynamics of the collisions and from the reaction plane reconstruction methods as well. These effects have to be taken into account when comparisons with theoretical calculations are done.Comment: 27 pages, 15 figure

    Multifragmentation of a very heavy nuclear system (I): Selection of single-source events

    Full text link
    A sample of `single-source' events, compatible with the multifragmentation of very heavy fused systems, are isolated among well-measured 155Gd+natU 36AMeV reactions by examining the evolution of the kinematics of fragments with Z>=5 as a function of the dissipated energy and loss of memory of the entrance channel. Single-source events are found to be the result of very central collisions. Such central collisions may also lead to multiple fragment emission due to the decay of excited projectile- and target-like nuclei and so-called `neck' emission, and for this reason the isolation of single-source events is very difficult. Event-selection criteria based on centrality of collisions, or on the isotropy of the emitted fragments in each event, are found to be inefficient to separate the two mechanisms, unless they take into account the redistribution of fragments' kinetic energies into directions perpendicular to the beam axis. The selected events are good candidates to look for bulk effects in the multifragmentation process.Comment: 39 pages including 15 figures; submitted to Nucl. Phys.
    • 

    corecore