138 research outputs found
Molecular biology of the dimorphic fungi Paracoccidioides SPP
Paracoccidioides spp, herein commonly referred as Paracoccidioides brasiliensis, is the etiological agent of racoccidioidomycosis (PCM), the most prevalent systemic mycosis endemic in
Latin America. Many aspects of the biology of P. brasiliensis remain unknown, in particular
its ecology and the apparent lack of a sexual reproduction stage in its life cycle. This review
will highlight the current knowledge on the genetics and genomics of P. brasiliensis, its most important putative virulence factors and the challenges for developing genetic tools in this organism. P. brasiliensis is a dimorphic ascomycete fungus belonging to the order Onygenales, family Ajellomycetaceae. The P. brasiliensis pathogenic yeast form is haracterized by a multiple-budding and multinucleate nature, with a highly polymorphic cellular shape.
Successful infection and dissemination by P. brasiliensis requires initial interaction of the
fungus with host cells. The fungus has to adhere to host cells after which internalization of
the fungus takes place. Gp43 is a 43-kDa glycoprotein that participates in the interaction
with the host at different levels. There are very few putative virulence factors described in P. brasiliensis,amongthem an extracellular phospholipase B, a 32-kDa haloacid dehalogenase
PbHad32 that was shown to bind laminin, fibrinogen, and fibronectin, and to be important for initial adhesion to pulmonary epithelial cells, the pigment melanin, and the Rho-like GTPase PbCdc42. The morphological transition of P. brasiliensis from mycelium to the yeast form is a key process for the infectivity of the fungus. There are several transcriptional profiling studies addressing which genes have increased or decreased mRNA accumulation during mycelium-to-yeast transitions. Functional genomics studies in P. brasiliensis have been hampered by the absence of efficient molecular techniques that enable targeted gene inactivation
in this fungus. However, an optimized Agrobacterium tumefaciens-mediated transformation
method has been developed and was used to knock-down expression of the genes
encoding the Rho-like GTPase PbCdc42 and the HAD-type hydrolase PbHad32. A challenge
for the future is the development of mutagenesis methods that allow for the creation of targeted
insertional gene mutants in Paracoccidioides spp. The complete genome sequencing of three isolates of Paracoccidioides species provides the opportunity to perform more complete
evaluations of the transcriptomic and proteomic data, and to understand the biology and virulence of these important pathogenic fungi.Fundação para a Ciência e Tecnologia (FCT) - Bolsa nº PTDC/BIA-MIC/108309/2008Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento. CientÃfico e Tecnológic
Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1
In silico identification criteria were defined to predict if genes encoding histidine protein kinases (HPKs) and response regulators (RRs) could be part of peptide-based quorum sensing (QS) two-component regulatory systems (QS-TCSs) in Firmicutes. These criteria were used to screen HPKs and RRs annotated on the completed genome sequences of Lactobacillus species, and several (putative) QS-TCSs were identified in this way. The five peptide-based QS-TCSs that were predicted on the Lactobacillus plantarum WCFS1 genome were further analysed to test their (QS) functionality. Four of these systems contained an upstream gene encoding a putative autoinducing peptide (AIP), of which two were preceded by a double-glycine-type leader peptide. One of these was identical to the plnABCD regulatory system of L. plantarum C11 and was shown to regulate plantaricin production in L. plantarum WCFS1. The third TCS was designated lamBDCA for Lactobacillus agr-like module, where the lamD gene was shown to encode a cyclic thiolactone peptide. The fourth TCS was paralogous to the lam system and contained a putative AIP-encoding gene but lacked the lamB gene. Finally, a genetically separated orphan HPK and RR that showed clear peptide-based QS characteristics could form a fifth peptide-based QS-TCS. The predicted presence of multiple (peptide-based) QS-TCSs in some lactobacilli and in particular in L. plantarum might be a reflection of the ability of these species to persist in a diverse range of ecological niches
Functionality of the paracoccidioides mating α-pheromone-receptor system
Recent evidence suggests that Paracoccidioides species have the potential to undergo sexual reproduction, although no sexual cycle has been identified either in nature or under laboratory conditions. In the present work we detected low expression levels of the heterothallic MAT loci genes MAT1-1 and MAT1-2, the a-pheromone (PBa) gene, and the a- and apheromone receptor (PREB and PREA) genes in yeast and mycelia forms of several Paracoccidioides isolates. None of the genes were expressed in a mating type dependent manner. Stimulation of P. brasiliensis MAT1-2 strains with the synthetic a pheromone peptide failed to elicit transcriptional activation of MAT1-2, PREB or STE12, suggesting that the strains tested are insensitive to a-pheromone. In order to further evaluate the biological functionality of the pair a-pheromone and its receptor, we took advantage of the heterologous expression of these Paracoccidioides genes in the corresponding S. cerevisiae null mutants. We show that S. cerevisiae strains heterologously expressing PREB respond to Pba pheromone either isolated from Paracoccidioides culture supernatants or in its synthetic form, both by shmoo formation and by growth and cell cycle arrests. This allowed us to conclude that Paracoccidioides species secrete an active a-pheromone into the culture medium that is able to activate its cognate receptor. Moreover, expression of PREB or PBa in the corresponding null mutants of S. cerevisiae restored mating in these non-fertile strains. Taken together, our data demonstrate pheromone signaling activation by the Paracoccidioides a-pheromone through its receptor in this yeast model, which provides novel evidence for the existence of a functional mating signaling system in Paracoccidioides.MHJS and JFM were supported by Fundacão para a Ciência e Tecnologia (FCT) grants. This work was supported by a grant from FCT (PTDC/BIA-MIC/
108309/2008)
Effect of Lactobacillus salivarius Bacteriocin Abp118 on the Mouse and Pig Intestinal Microbiota
Lactobacilli are Gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on Gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent
P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation
Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.J.F.M. and J.G.R. were supported by a PhD grant from Fundacao para a Ciencia e Tecnologia (FCT). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Sturme. and M. Saraiva are Ciencia 2008 fellows. The authors would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Inhibition of Competence Development, Horizontal Gene Transfer and Virulence in Streptococcus pneumoniae by a Modified Competence Stimulating Peptide
Competence stimulating peptide (CSP) is a 17-amino acid peptide pheromone secreted by Streptococcus pneumoniae. Upon binding of CSP to its membrane-associated receptor kinase ComD, a cascade of signaling events is initiated, leading to activation of the competence regulon by the response regulator ComE. Genes encoding proteins that are involved in DNA uptake and transformation, as well as virulence, are upregulated. Previous studies have shown that disruption of key components in the competence regulon inhibits DNA transformation and attenuates virulence. Thus, synthetic analogues that competitively inhibit CSPs may serve as attractive drugs to control pneumococcal infection and to reduce horizontal gene transfer during infection. We performed amino acid substitutions on conserved amino acid residues of CSP1 in an effort to disable DNA transformation and to attenuate the virulence of S. pneumoniae. One of the mutated peptides, CSP1-E1A, inhibited development of competence in DNA transformation by outcompeting CSP1 in time and concentration-dependent manners. CSP1-E1A reduced the expression of pneumococcal virulence factors choline binding protein D (CbpD) and autolysin A (LytA) in vitro, and significantly reduced mouse mortality after lung infection. Furthermore, CSP1-E1A attenuated the acquisition of an antibiotic resistance gene and a capsule gene in vivo. Finally, we demonstrated that the strategy of using a peptide inhibitor is applicable to other CSP subtype, including CSP2. CSP1-E1A and CSP2-E1A were able to cross inhibit the induction of competence and DNA transformation in pneumococcal strains with incompatible ComD subtypes. These results demonstrate the applicability of generating competitive analogues of CSPs as drugs to control horizontal transfer of antibiotic resistance and virulence genes, and to attenuate virulence during infection by S. pneumoniae
Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae
<p>Abstract</p> <p>Background</p> <p>Two component systems (TCS) are signal transduction pathways which typically consist of a sensor histidine kinase (HK) and a response regulator (RR). In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in <it>Lactobacillaceae </it>and <it>Leuconostocaceae</it>, two families belonging to the group of lactic acid bacteria (LAB). LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest.</p> <p>Results</p> <p>The genomes of 19 strains belonging to 16 different species have been analyzed. The number of TCS encoded by the strains considered in this study varied between 4 in <it>Lactobacillus helveticus </it>and 17 in <it>Lactobacillus casei</it>. The OmpR/IIIA family was the most prevalent in <it>Lactobacillaceae </it>accounting for 71% of the TCS present in this group. The phylogenetic analysis shows that no new TCS of this family has recently evolved in these <it>Lactobacillaceae </it>by either lineage-specific gene expansion or domain shuffling. Furthermore, no clear evidence of non-orthologous replacements of either RR or HK partners has been obtained, thus indicating that coevolution of cognate RR and HKs has been prevalent in <it>Lactobacillaceae</it>.</p> <p>Conclusions</p> <p>The results obtained suggest that vertical inheritance of TCS present in the last common ancestor and lineage-specific gene losses appear as the main evolutionary forces involved in their evolution in <it>Lactobacillaceae</it>, although some HGT events cannot be ruled out. This would agree with the genomic analyses of <it>Lactobacillales </it>which show that gene losses have been a major trend in the evolution of this group.</p
Peptides as quorum sensing molecules : measurement techniques and obtained levels in vitro and in vivo
The expression of certain bacterial genes is regulated in a cell-density dependent way, a phenomenon called quorum sensing. Both Gram-negative and Gram-positive bacteria use this type of communication, though the signal molecules (auto-inducers) used by them differ between both groups: Gram-negative bacteria use predominantly N-acyl homoserine lacton (AHL) molecules (autoinducer-1, AI-1) while Gram-positive bacteria use mainly peptides (autoinducer peptides, AIP or quorum sensing peptides). These quorum sensing molecules are not only involved in the inter-microbial communication, but can also possibly cross-talk directly or indirectly with their host. This review summarizes the currently applied analytical approaches for quorum sensing identification and quantification with additionally summarizing the experimentally found in vivo concentrations of these molecules in humans
TLR9 activation dampens the early inflammatory response to paracoccidioides brasiliensis, Impacting host survival
Background: Paracoccidioides brasiliensis causes paracoccidioidomycosis, one of the most prevalent systemic mycosis in
Latin America. Thus, understanding the characteristics of the protective immune response to P. brasiliensis is of interest, as it
may reveal targets for disease control. The initiation of the immune response relies on the activation of pattern recognition
receptors, among which are TLRs. Both TLR2 and TLR4 have been implicated in the recognition of P. brasiliensis and
regulation of the immune response. However, the role of TLR9 during the infection by this fungus remains unclear.J.F. Menino was supported by a grant from Fundacao para a Ciencia e Tecnologia (FCT), Portugal (SFRH/BD/33446/2008). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Saraiva is a Ciencia 2007 fellow and M. Sturme is a Ciencia 2008 fellow. We would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri
Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process
- …