106 research outputs found

    Dietary supplementation of essential oils in dairy cows: evidence for stimulatory effects on nutrient absorption

    Get PDF
    Results of recent in vitro experiments suggest that essential oils (EO) may not only influence ruminal fermentation but also modulate the absorption of cations like Na+, Ca2+ and NH4+ across ruminal epithelia of cattle and sheep through direct interaction with epithelial transport proteins, such as those of the transient receptor potential family. The aim of the current study was to examine this hypothesis by testing the effect of a blend of essential oils (BEO) on cation status and feed efficiency in lactating dairy cows. In the experiment, 72 dairy cows in mid-to-end lactation were divided into two groups of 36 animals each and fed the same mixed ration with or without addition of BEO in a 2×2 cross-over design. Feed intake, milk yield and composition, plasma and urine samples were monitored. Feeding BEO elevated milk yield, milk fat and protein yield as well as feed efficiency, whereas urea levels in plasma and milk decreased. In addition, plasma calcium levels increased significantly upon BEO supplementation, supporting the hypothesis that enhanced cation absorption might contribute to the beneficial effects of these EO

    Participatory Geographic Information Systems as an Organizational Platform for the Integration of Traditional and Scientific Knowledge in Contemporary Fire and Fuels Management

    Get PDF
    Traditional knowledge about fire and its effects held by indigenous people, who are connected to specific landscapes, holds promise for informing contemporary fire and fuels management strategies and augmenting knowledge and information derived from western science. In practice, however, inadequate means to organize and communicate this traditional knowledge with scientists and managers can limit its consideration in decisions, requiring novel approaches to interdisciplinary and cross-cultural communication and collaboration. We propose that Participatory Geographic Information Systems (PGIS) is one platform for the assemblage and communication of traditional knowledge vital to fire and fuels management, while preserving linkages to broader cultural contexts. We provide summaries of four preliminary case studies in the Intermountain West of North America to illustrate different potential applications of a PGIS tool in this context and describe some remaining challenges. Management and Policy Implications: Participatory Geographic Information Systems (PGIS) can offer a powerful approach for enhancing current decisionmaking by allowing for the integration of traditional and scientific knowledge systems with spatial environmental data in an interactive participatory process. Integrated data sets can allow traditional and scientific knowledge experts to share, explore, manage, analyze, and interpret multidimensional data in a common spatial context to develop more informed management decisions. Such combined data sets could provide a more comprehensive assessment of fire-related ecological change than is currently used in decisionmaking and enhance inclusion of effects on local resource utility values and areas of cultural significance. The use of a PGIS interface creates opportunities for traditional knowledge holders to share information and potential prescriptions while maintaining confidentiality. Knowledge integration efforts using PGIS as an organizational tool would help to bridge the communication gap that commonly exists between scientists, managers, and traditional knowledge holders as ecosystems continue to be altered through processes of land management and climate change

    Representations of spectral coordinates in FITS

    Full text link
    Greisen & Calabretta describe a generalized method for specifying the coordinates of FITS data samples. Following that general method, Calabretta & Greisen describe detailed conventions for defining celestial coordinates as they are projected onto a two-dimensional plane. The present paper extends the discussion to the spectral coordinates of wavelength, frequency, and velocity. World coordinate functions are defined for spectral axes sampled linearly in wavelength, frequency, or velocity, linearly in the logarithm of wavelength or frequency, as projected by ideal dispersing elements, and as specified by a lookup table.Comment: 25 pages, 5 figure

    The First Extrasolar Planet Discovered with a New Generation High Throughput Doppler Instrument

    Get PDF
    We report the detection of the first extrasolar planet, ET-1 (HD 102195b), using the Exoplanet Tracker (ET), a new generation Doppler instrument. The planet orbits HD 102195, a young star with solar metallicity that may be part of the local association. The planet imparts radial velocity variability to the star with a semiamplitude of 63.4±2.063.4\pm2.0 m s1^{-1} and a period of 4.11 days. The planetary minimum mass (msinim \sin i) is 0.488±0.0150.488\pm0.015 MJM_J.Comment: 42 pages, 11 figures and 5 tables, Accepted for publication in Ap

    Pulsational Mapping of Calcium Across the Surface of a White Dwarf

    Get PDF
    We constrain the distribution of calcium across the surface of the white dwarf star G29-38 by combining time series spectroscopy from Gemini-North with global time series photometry from the Whole Earth Telescope. G29-38 is actively accreting metals from a known debris disk. Since the metals sink significantly faster than they mix across the surface, any inhomogeneity in the accretion process will appear as an inhomogeneity of the metals on the surface of the star. We measure the flux amplitudes and the calcium equivalent width amplitudes for two large pulsations excited on G29-38 in 2008. The ratio of these amplitudes best fits a model for polar accretion of calcium and rules out equatorial accretion.Comment: Accepted to the Astrophysical Journal. 16 pages, 10 figures

    Cyclical period changes in the dwarf novae V2051 Oph and V4140 Sgr

    Full text link
    We report the identification of cyclical changes in the orbital period of the eclipsing dwarf novae V2051 Ophiuchi and V4140 Sagitarii. We used sets of white dwarf mid-eclipse timings to construct observed-minus-calculated diagrams covering, respectively, 25 and 16 years of observations. The V2051 Oph data present cyclical variations that can be fitted by a linear plus sinusoidal function with period 22 +/- 2 yr and amplitude 17 +/- 3 s. The statistical significance of this period by an F-test is larger than 99.9 per cent. The V4140 Sgr data present cyclical variations of similar amplitude and period 6.9 +/- 0.3 yr which are statistically significant at the 99.7 per cent level. We derive upper limits for secular period changes of |dP/dt| < 3x10^{-12} and |dP/dt| < 1.8x10^{-11}, respectively for V2051 Oph and V4140 Sgr. We combined our results with those in the literature to construct a diagram of the amplitude versus period of the modulation for a sample of 11 eclipsing cataclysmic variables (CVs). If the cyclical period changes are the consequence of a solar-type magnetic activity cycle in the secondary star, then magnetic activity is a widespread phenomenon in CVs, being equally common among long- and short-period systems. This gives independent evidence that the magnetic field (and activity) of the secondary stars of CVs do not disappear when they become fully convective. We also find that the fractional cycle period changes of the short-period CVs are systematically smaller than those of the long-period CVs.Comment: 9 pages, 4 postscript figures, coded with MNRAS latex style file. To appear in Monthly Notices of the Royal Astronomical Societ

    Microtubule sliding activity of a kinesin-8 promotes spindle assembly and spindle length control

    Get PDF
    Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by cross-linking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report for the first time on an anti-parallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule destabilizing activity. In conjunction with kinesin-5/Cin8, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a “slide-disassemble” model where Kip3’s sliding and destabilizing activity balance during pre-anaphase. This facilitates normal spindle assembly. However, Kip3’s destabilizing activity dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly

    A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background

    Get PDF
    This paper presents a measurement of the angular power spectrum of the Cosmic Microwave Background from l=75 to l=1025 (~10' to 5 degrees) from a combined analysis of four 150 GHz channels in the BOOMERANG experiment. The spectrum contains multiple peaks and minima, as predicted by standard adiabatic-inflationary models in which the primordial plasma undergoes acoustic oscillations. These results significantly constrain the values of Omega_tot, Omega_b h^2, Omega_c h^2 and n_s.Comment: changes to reflect version accepted by Ap

    The BOOMERanG experiment and the curvature of the Universe

    Get PDF
    We describe the BOOMERanG experiment and its main result, i.e. the measurement of the large scale curvature of the Universe. BOOMERanG is a balloon-borne microwave telescope with sensitive cryogenic detectors. BOOMERanG has measured the angular distribution of the Cosmic Microwave Background on 3\sim 3% of the sky, with a resolution of 10\sim 10 arcmin and a sensitivity of 20μK\sim 20 \mu K per pixel. The resulting image is dominated by hot and cold spots with rms fluctuations 80μK\sim 80 \mu K and typical size of 1o\sim 1^o. The detailed angular power spectrum of the image features three peaks and two dips at =(21313+10),(54132+20),(84525+12)\ell = (213^{+10}_{-13}), (541^{+20}_{-32}), (845^{+12}_{-25}) and =(41612+22),(750750+20)\ell = (416^{+22}_{-12}), (750^{+20}_{-750}), respectively. Such very characteristic spectrum can be explained assuming that the detected structures are the result of acoustic oscillations in the primeval plasma. In this framework, the measured pattern constrains the density parameter Ω\Omega to be 0.85<Ω<1.10.85 < \Omega < 1.1 (95% confidence interval). Other cosmological parameters, like the spectral index of initial density fluctuations, the density parameter for baryons, dark matter and dark energy, are detected or constrained by the BOOMERanG measurements and by other recent CMB anisotropy experiments. When combined with other cosmological observations, these results depict a new, consistent, cosmological scenario.Comment: Proc. of the Erice School on "Neutrinos in Astro, Particle and Nuclear Physics", 18.-26. September 2001, Amand Faessler, Jan Kuckei eds, "Progress in Particle and Nuclear Physics", vol. 4
    corecore