15 research outputs found

    Single‐cell omics: Overview, analysis, and application in biomedical science

    Get PDF
    Single-cell sequencing methods provide the highest resolution insight into cellular heterogeneity. Owing to their rapid growth and decreasing cost, they are now widely accessible to scientists worldwide. Single-cell technologies enable analysis of a large number of cells, making them powerful tools to characterise rare cell types and refine our understanding of diverse cell states. Moreover, single-cell application in biomedical sciences helps to unravel mechanisms related to disease pathogenesis and outcome. In this Viewpoint, we briefly describe existing single-cell methods (genomics, transcriptomics, epigenomics, proteomics, and mulitomics), comment on available analysis tools, and give examples of method applications in the biomedical field

    Analysis of endothelial-to-haematopoietic transition at the single cell level identifies cell cycle regulation as a driver of differentiation

    Get PDF
    Funder: INTENS EU fp8 consortiumFunder: ERC advanced grant New-CholAbstract: Background: Haematopoietic stem cells (HSCs) first arise during development in the aorta-gonad-mesonephros (AGM) region of the embryo from a population of haemogenic endothelial cells which undergo endothelial-to-haematopoietic transition (EHT). Despite the progress achieved in recent years, the molecular mechanisms driving EHT are still poorly understood, especially in human where the AGM region is not easily accessible. Results: In this study, we take advantage of a human pluripotent stem cell (hPSC) differentiation system and single-cell transcriptomics to recapitulate EHT in vitro and uncover mechanisms by which the haemogenic endothelium generates early haematopoietic cells. We show that most of the endothelial cells reside in a quiescent state and progress to the haematopoietic fate within a defined time window, within which they need to re-enter into the cell cycle. If cell cycle is blocked, haemogenic endothelial cells lose their EHT potential and adopt a non-haemogenic identity. Furthermore, we demonstrate that CDK4/6 and CDK1 play a key role not only in the transition but also in allowing haematopoietic progenitors to establish their full differentiation potential. Conclusion: We propose a direct link between the molecular machineries that control cell cycle progression and EHT

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Dissecting human disease with single-cell omics: application in model systems and in the clinic

    No full text
    Probing cellular population diversity at single-cell resolution became possible only in recent years. The popularity of single-cell ‘omic’ approaches, which allow researchers to dissect sample heterogeneity and cell-to-cell variation, continues to grow. With continuous technological improvements, single-cell omics are becoming increasingly prevalent and contribute to the discovery of new and rare cell types, and to the deciphering of disease pathogenesis and outcome. Animal models of human diseases have significantly facilitated our understanding of the mechanisms driving pathologies and resulted in the development of more efficient therapies. The application of single-cell omics to animal models improves the precision of the obtained insights, and brings single-cell technology closer to the clinical field. This Review focuses on the use of single-cell omics in cellular and animal models of diseases, as well as in samples from human patients. It also highlights the potential of these approaches to further improve the diagnosis and treatment of various pathologies, and includes a discussion of the advantages and remaining challenges in implementing these technologies into clinical practice

    Dissecting human disease with single-cell omics: application in model systems and in the clinic.

    No full text
    Probing cellular population diversity at single-cell resolution became possible only in recent years. The popularity of single-cell 'omic' approaches, which allow researchers to dissect sample heterogeneity and cell-to-cell variation, continues to grow. With continuous technological improvements, single-cell omics are becoming increasingly prevalent and contribute to the discovery of new and rare cell types, and to the deciphering of disease pathogenesis and outcome. Animal models of human diseases have significantly facilitated our understanding of the mechanisms driving pathologies and resulted in the development of more efficient therapies. The application of single-cell omics to animal models improves the precision of the obtained insights, and brings single-cell technology closer to the clinical field. This Review focuses on the use of single-cell omics in cellular and animal models of diseases, as well as in samples from human patients. It also highlights the potential of these approaches to further improve the diagnosis and treatment of various pathologies, and includes a discussion of the advantages and remaining challenges in implementing these technologies into clinical practice.The study was supported by Cancer Research UK grant number C45041/A14953 and European Research Council project 677501 – ZF_Blood. The authors would like to thank Jana Elias for generating Figure 1

    Integrative single-cell RNA-seq and ATAC-seq analysis of human developmental hematopoiesis

    No full text
    Regulation of hematopoiesis during human development remains poorly defined. Here we applied single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to over 8,000 human immunophenotypic blood cells from fetal liver and bone marrow. We inferred their differentiation trajectory and identified three highly proliferative oligopotent progenitor populations downstream of hematopoietic stem cells (HSCs)/multipotent progenitors (MPPs). Along this trajectory, we observed opposing patterns of chromatin accessibility and differentiation that coincided with dynamic changes in the activity of distinct lineage-specific transcription factors. Integrative analysis of chromatin accessibility and gene expression revealed extensive epigenetic but not transcriptional priming of HSCs/MPPs prior to their lineage commitment. Finally, we refined and functionally validated the sorting strategy for the HSCs/MPPs and achieved around 90% enrichment. Our study provides a useful framework for future investigation of human developmental hematopoiesis in the context of blood pathologies and regenerative medicine. Ranzoni et al. provide a detailed transcriptional and chromatin accessibility map of fetal liver and bone marrow hematopoietic stem cells (HSCs). Within HSCs, they revealed extensive epigenetic but not transcriptional priming. They identified transcriptional and functional differences between HSCs from liver and bone marrow
    corecore