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Abstract 

Innate lymphoid cells (ILCs) are important mediators of the immune response and homeostasis in barrier 

tissues of mammals. However, the existence and function of ILCs in other vertebrates is poorly understood. 

Here, we use single-cell RNA sequencing to generate a comprehensive atlas of zebrafish lymphocytes 

during tissue homeostasis and following immune challenge. We profiled 14,080 individual cells from the 

gut of wild-type zebrafish, as well as of rag1-deficient zebrafish which lack T and B cells, and discovered 

populations of ILC-like cells. We uncovered a rorc-positive subset of innate lymphoid cells that could 

express cytokines associated with type 1, 2 and 3 responses upon immune challenge. Specifically, these 

ILC-like cells expressed il22 and tnfa following exposure to inactivated bacteria, or il13 following exposure 

to helminth extract. Cytokine-producing ILC-like cells express a specific repertoire of novel immune-type 

receptors (NITRs), likely involved in recognition of environmental cues. We identified additional novel 

markers of zebrafish ILCs and generated a cloud repository for their in-depth exploration. 

  

Introduction 

Vertebrate immune systems consist of the innate arm, which responds immediately to challenge, and the 

adaptive arm, which responds via acquired antigen receptors. In mammals, myeloid cells (granulocytes, 

mast cells, monocytes/macrophages, dendritic cells) form the innate immune system, whereas B and T 

lymphocytes contribute to the adaptive immune response (1, 2). Recently discovered innate lymphoid cells 

(ILCs) represent a rare population of lymphocytes (3–5). Unlike T and B cells, ILCs do not express antigen 

receptors or undergo clonal expansion when stimulated. Instead, in the absence of adaptive antigen 

receptors, ILCs sense environmental cues mostly through cytokine receptors, and promptly respond to 

signals by producing distinct cytokines. More recently, it has been demonstrated that both murine and 

human ILCs express a receptor for the neuropeptide neuromedin, secreted by cholinergic neurons which 

directly sense worm products and control the expression of innate type 2 cytokines (6). During 

homeostasis, humans and mice contain four populations of ILCs: natural killer (NK) cells, and three 

subsets of helper ILCs (ILC1, ILC2 and ILC3). NK cells bear similarity to cytotoxic T cells (CD8+ cells), 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/200998024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

2 

which directly kill cells infected with intracellular pathogens. Helper ILCs in human and mouse are 

classified as ILC1, ILC2 and ILC3 based on their transcription factor (TF) and cytokine secretion profiles, 

as well as phenotypic cell-surface markers (3–5, 7). Both Th1 and ILC1 express T-bet (encoded by tbx21) 

as well as so-called “Th1 cytokines” such as interferon gamma (IFNg) and tumour necrosis factor alpha 

(TNFα), and act against intracellular pathogens. Th2 and ILC2 express GATA-3 and secrete IL-4, IL-13 

and amphiregulin, and contribute to defence against helminths and venoms. Th17 and ILC3s express 

RORγt (encoded by rorc) as well as IL-17a, IL-17f and IL-22 and promote immunity against extracellular 

bacteria and fungi (3, 4, 8, 9). To date, the bulk of our knowledge of ILCs comes from studies in humans 

and in mice (3, 4, 10, 11). 

  

The different immune cell types are usually distinguished based on expression of specific CD (cluster of 

differentiation) markers. However, a homogenous population of blood cells, as defined by surface markers, 

may include many distinct transcriptional states with different functional properties (12–15). In addition, the 

surface markers used to define distinct human and murine leukocyte subsets are not the same, making it 

difficult to compare cell types across different species. Therefore, there is a need for unbiased 

methodologies that define immune cell types based on cellular state rather than cell surface markers. This 

is particularly relevant for species other than mouse and human, where specific antibodies for distinct 

blood and immune cell types are not readily available.  

  

In zebrafish, the heterogeneity of haematopoietic cells has mostly been investigated with fluorescent 

transgenic reporter lines, as very few antibodies for surface markers are available (16). These approaches 

have confirmed the presence of erythrocytes, thrombocytes, neutrophils, macrophages, eosinophils, T 

cells, B cells and NK cells in zebrafish. Comprehensive transcriptome atlases exist for many of these cell 

types (17–19). Because these studies focused on steady state conditions, they were limited in their ability 

to characterise the response mechanisms following immune challenge. Compared to mice and humans, 

little is known about the diversity of cytokine-producing innate lymphoid cells in zebrafish, and a detailed 

characterization of their transcriptional profiles is still lacking.   

  

Here, we characterized the repertoire of innate and adaptive lymphocytes in zebrafish. Using single-cell 

RNA sequencing, we generated a comprehensive atlas of cellular states of lymphocytes collected from 

various organs in steady state and following immune challenge. By studying cytokine-expression of 

lymphocytes in rag1-/- zebrafish, we have identified cells that resemble ILC2 and ILC3 cells described in 

mice and in humans.  

  

Results 

rag1-/- mutants lack T and B cells but have cytokine-producing cells in the gut 

Rag1- and Rag2-deficient mouse strains, which lack adaptive but retain innate lymphoid cells (20–22), 

have provided substantial insight into ILCs. These mice showed expression of many cytokines previously 

considered to be T cell-specific and therefore provided the first evidence of the existence of helper ILCs 

(20–22). Thus, to focus on innate lymphoid cells in zebrafish, we turned to rag1-/- mutants. As in mice, rag1-

/- zebrafish lack T and B lymphocytes (23) but retain NK cells (24).  

  

In line with previous reports (23–25), rag1-/- zebrafish displayed a reduced population of lymphoid cells in 

the gut as defined by FSC/SSC gating on FACS (Figure 1A-B). Further, bulk qPCR on FACS-sorted cells 

from the lymphoid population of rag1-/- zebrafish showed two- and four-fold decreases in the expression of 

T cell markers such as cd3z and trac, respectively, compared to the wild-type zebrafish, whereas the 

expression level of il7r and lck remained the same (Figure 1C). To verify that rag1-/- zebrafish indeed lack 

adaptive lymphocytes, we sequenced 171 lck:EGFP+ single cells collected from gut and kidney of the  

rag1-/- zebrafish and applied TraCeR (26), a novel method for reconstruction of TCR sequences from 

single-cell RNA-seq data to search for V(D)J recombination events in individual cells. No TCR 
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rearrangements were detected in cells isolated from rag1-/- zebrafish (Table S1). These data confirm that 

the rag1-/- provides an excellent tool to examine the innate lymphocytes in zebrafish. 

  

Mammals contain three populations of helper ILCs (ILC-1, ILC-2 and ILC-3) that rapidly respond to different 

tissue signals by producing effector cytokines (27–29). To study this process in zebrafish, we established 

short-term inflammation models that trigger cytokine expression of potential ILCs in zebrafish gut (Figure 

1D). Formalin-inactivated Vibrio anguillarum has been used as a fish vaccine and is known to induce type 

3 immunity (30); whereas the nematode Anisakis simplex, a common fish parasite, is expected to induce 

type 2 immunity (31). We injected wild-type and rag1-/- zebrafish intraperitoneally with PBS (control) or 

extracts of inactivated V. anguillarum or of lyophilised A. simplex. Six hours post-injection, we dissected 

the guts and evaluated the expression of signature cytokines by qRT-PCR (Figure 1D, E). We found that, 

in both wild-type and rag1-/- zebrafish, injection of V. anguillarum extract induced the expression of 

Th1/ILC1 cytokines such as ifng1-1, ifng1-2 as well as Th17/ILC3 cytokines, il17a/f3 and il22 (Figure 1E). 

The expression levels of the Th2/ILC2 cytokines il4 and il13 remained unchanged in V. anguillarum-

compared to PBS-injected zebrafish. Conversely, injection of A. simplex extract induced the expression of 

Th2/ILC2 cytokines il4 and il13 but not of ifng1-1, ifng1-2, tnfa, il17a/f3 and il22 (Figure 1E). 

  

These findings have two important implications. First, they confirm that intraperitoneal injection of V. 

anguillarum extract induces a type 1/type 3 immune response in zebrafish gut, and of A. simplex extract 

induce a type 2 immune response. Second, they reveal the presence of cytokine-producing cells in the gut 

of immune-challenged rag1-/- zebrafish, in the context of T cell deficiency. Given that mammalian ILCs 

have phenotypes that mirror polarized Th subsets in their expression of effector cytokines, our data 

suggest that the gut in zebrafish contains bona fide ILC subtypes. 

  

Single-cell RNA sequencing reveals ILC2- and ILC3-like cells in zebrafish  

ILCs comprise around 0.5-5% of lymphocytes in barrier tissues in mammals and as such represent a rare 

population of cells (9, 32). As the LCK gene is expressed in all three ILC subtypes in humans (33) (Figure 

S1), we reasoned that its expression pattern could be conserved in zebrafish. To capture ILCs subtypes 

in zebrafish, we utilised our short-term inflammation protocol on Tg(lck:EGFP) rag1-/- zebrafish. Single-cell 

RNA sequencing of thousands of lck:EGFP+ cells isolated from a gut of immune-challenged rag1-/- mutants 

provided a powerful approach to study cytokine-producing ILCs in zebrafish.  

  

10x Genomics captures single cells in droplets, such that 5000 cells can be captured and subsequently 

sequenced within a single run (34). As above, we injected Tg(lck:EGFP) rag1-/- mutant zebrafish 

intraperitoneally with PBS, inactivated V. anguillarum or lyophilised A. simplex extracts and sorted 

lck:EGFP+ cells from the gut six hours post-injection. To ensure that a sufficient number of cells were 

loaded on 10x, we combined an equal number of lck:EGFP+ cells for each condition (PBS, A. simplex and 

V. anguillarum) from three different zebrafish (nine zebrafish in total). By using this approach, we 

generated a comprehensive data set that included 3211 single lck:EGFP+ cells from the guts of PBS-

injected, 3626 cells from A. simplex-injected and 3487 cells from V. anguillarum-injected rag1-/- zebrafish 

(Figure 2). On average, we detected 600 genes per cell (Figure S2). This relatively modest number of 

detected genes was observed in all our data sets and could be linked with the small size of lymphocytes 

and their low RNA content (35).  Clustering, followed by unbiased identification of marker genes for each 

cluster (see Methods section), revealed ILC-like cells in all three datasets (Figure 2, Figure S3-4, Figure 

S5A, Table S2). 

  

We first analysed lck:EGFP+ cells from PBS-injected zebrafish and identified several clusters of 

lymphocytes that expressed ifng1-2 and granzyme genes (gzm3, gzmk) (Figure 2A). This transcriptional 

signature resembles mammalian NK cells. In addition, we identified cells that exclusively expressed ifng1-

1 but not granzymes or nk lysins (cluster 4 on Figure 2A, Table S2). Cells in cluster 4 could be considered 

ILC1-like cells in zebrafish. 
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Importantly, our analysis revealed two rare (0.8% and 3.8%) populations of rorc+ cells (clusters 1 and 3 

on Figure 2A and Figure S3-4, Figure S5A, Table S2). The TF RORγt (encoded by rorc) is expressed at 

low levels in circulating and tissue resident ILC precursors in human, as well as in mature ILC3 in human 

and mouse (36, 37). Rorc is required for the development and function of ILC3 (38, 39). We found that the 

rorc+ clusters did not express cytotoxicity-associated genes such as granzymes (gzm3, gzmk) or nk lysins 

(nkl.2). To investigate the potential function of these two rorc+ clusters, we performed differential 

expression (DE) analysis followed by gene ontology (GO) enrichment analysis (see Methods). We found 

that rorc+ cluster 1 was associated with GO-terms like “response to stress” and “protein folding” (Figure 

S5B) and showed high expression of the pro-survival gene mcl1b, transcription factor sox13, and tumour 

necrosis factor beta (tnfb), an orthologue of human lymphotoxin alpha (LTA), but was negative/low for 

novel immune-type receptor genes (e.g. nitr2b, nitr7b, nitr9, nitr4a, etc.), as well as ifng1-2/ifng1-1 (from 

here on nitr-rorc+ cluster) (Figure 2, Figure S3-4). In contrast, rorc+ cluster 3 was associated with terms 

like “immune system process”, “response to interferon gamma” and “response to other organisms” (Figure 

S5B) and was positive for tumour necrosis factor alpha (tnfa) as well as novel immune-type receptors nitr9 

and nitr4a, but also negative for ifng1-2/ifng1-1 (from here on nitr+rorc+ cluster) (40, 41), (Figure 2A, Figure 

S3-4). Cells within this cluster also expressed gata3, which has been shown to be indispensable for 

development of all helper ILCs and expressed by subsets of ILCs at different levels (42). 

  

In V. anguillarum-injected zebrafish, nitr+rorc+ cells (cluster 1), but not nitr-rorc+ cells (cluster 10), 

expressed il22 and tnfa (Figure 2B, Figure S3-4, Table S2). In humans and mice, ILC3 cells produce the 

cytokines IL-22 and TNF-α cells upon stimulation with bacteria, triggering antimicrobial response and 

repair programs in epithelial cells during infection (43–46). These data strongly suggest the existence of 

ILC3-like cells in the zebrafish gut that respond to immune challenge by producing relevant cytokines.  

  

Interestingly, in zebrafish injected with lyophilised A. simplex, nitr+rorc+ cells (cluster 9) expressed il13 

and gata3 (Figure 2C, Figure S3-4, Table S2). The gata3 TF is highly expressed in ILC2 cells and is 

required for their development (46); it plays a critical role in activating IL-13 production in ILC2 upon 

stimulation, thus promoting anti-helminth immunity. Therefore, these cells (Figure 2C) resemble 

mammalian ILC2 cells. Again, il13-producing cells were nitr+ but lacked expression of granzymes, nkl.2 

and ifng1-2.  

  

Immune challenged zebrafish (V. anguillarum- or A. simplex-injected) also had a population of foxp3a+ 

cells (Figure 2B-C, Figure S3-4, Table S2). Cells in this cluster were negative for interferon gamma genes, 

nitr genes and granzymes as well as cd4-1. It is tempting to speculate that these cells might represent the 

zebrafish equivalent of recently reported mammalian regulatory innate lymphoid cells (47). However, it 

should be noted that we did not detect expression of il10 in this cluster. 

  

To validate that the rorc+ ILCs are a genuine constituent of the zebrafish gut, and not only present in rag1-

/- zebrafish, we sequenced and analysed additional 3756 GFP+ cells from the gut of PBS-injected wild-

type lck:EGFP zebrafish. As expected, most of these cells were T cells that expressed cd8a or cd4-1 

(specifically Tregs). However, we also identified two clusters of rorc+ cells that were negative for T cell 

marker genes: namely, nitr-rorc+ cells (cluster 10, Figure 3) that expressed mcl1b and tnfb, and nitr+rorc+ 

cells (cluster 9, Figure 3) that expressed tnfa (Figure 3). These cells represented 0.8% and 1.9% of the 

lck:EGFP+ cell population of wild-type zebrafish (Table S2). Taken together, our transcriptional profiling of 

innate lymphocytes in rag1-deficient and wild type zebrafish identified ILC-like populations. 

  

ILC-like subtypes have distinct response to immune challenge  

Our dataset revealed distinct, heterogeneous populations of innate lymphoid cells within the guts of PBS-

, V. anguillarum-, and A. simplex-injected zebrafish. We hypothesized that these distinct populations are 

biologically relevant, reflecting the response of immune cells to disparate stimuli. To test this hypothesis, 
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we evaluated whether the distinct cell types identified in control zebrafish matched those present in V. 

anguillarum- and A. simplex-injected zebrafish, and whether the specific treatments led to transcriptional 

changes in these cell types. We performed integrated analysis of PBS-, V. anguillarum-, and A. simplex-

injected zebrafish using a recently developed computational strategy for scRNA-seq alignment (48). This 

methodology was specifically designed to allow comparison of RNA-seq datasets across different 

conditions (Figure 4A). By following the Seurat alignment workflow, we uncovered “shared” cell types 

across all three datasets and compared their gene expression profiles.   

  

Our analysis showed that the nitr+rorc+ cells found separately in the three conditions (clusters 3, 1 and 9 

on Figures 2A-C, respectively) corresponded to a unique cell subtype (cluster 7 on Figure 4A; Figure S6A). 

Cells in this cluster upregulated il22, rorc and tnfa following in vivo stimulation with inactivated V. 

anguillarum (Figure 4A, Figure S6B). In contrast, injection of A. simplex resulted in upregulation of il13 and 

gata3 (Figure 4A), but ifng1-1, ifng1-2, tnfb and nitr genes remained unaltered relative to the control (Figure 

4A).  

  

Similarly, the nitr-rorc+ population of cells identified separately in PBS-, V. anguillarum- and A. simplex-

injected zebrafish (clusters 1, 10 and 7 on Figures 2A-C, respectively) grouped as distinct cluster (cluster 

13 in Figure 4A). These cells expressed mcl1b, sox13 and tnfb (orthologue of human lymphotoxin alpha, 

LTA) (Figure 4A, B). Mcl1 is pro-survival gene relevant for maintenance of viability but not of proliferation 

and is often expressed in long-lived cells (49–51); whereas the human tnfb ortholog LTA is expressed in 

lymphoid tissue inducer (LTi) cells and is involved in the regulation of cell proliferation, differentiation and 

survival (52, 53). Unlike nitr+rorc+ ILCs, nitr-rorc+ cells did not respond to immune stimuli by expressing 

cytokines (Figure 4B, Figure S6B). 

  

We next asked whether unstimulated nitr+rorc+ cells express unique surface receptors that enable them 

to respond to the immune challenge. In addition to nitr9 and nitr4a, nitr+rorc+ ILCs specifically expressed 

novel immune-type receptors nitr6b and nitr5 as shown by DE analysis (Figure 4B). In contrast with human 

unstimulated ILC subsets, less than 10% of unstimulated nitr+rorc+ cells expressed cytokine receptors, 

toll-like and other pattern recognition receptors. The developmental origins and hierarchical relationship 

between nitr-rorc+ and nitr+rorc+ populations, however, remains unclear. 

  

Finally, cells identified in cluster 4 in PBS-injected zebrafish, cluster 4 in V. anguillarum-injected zebrafish 

and cluster 2 in A. simplex-injected zebrafish (Figures 2A-C, respectively) grouped as cluster 2 (Figure 

4A). These cells showed clear upregulation of ifng1-1 following immune challenge with V. anguillarum and 

no expression of granzymes or nk lysins. These data further support that these cells potentially represent 

ILC1-like cells in zebrafish. 

  

Altogether, our analyses of over 10,000 single cells collected from the gut of rag1-/- zebrafish identified 

previously unappreciated diversity of innate lymphoid cells in zebrafish and revealed how this 

heterogeneity translates to cell-specific immune responses.  

  

Innate immune response shows high degree of heterogeneity between individuals 

Since immune response can vary between individuals upon challenge (54) we tested the robustness of 

our findings by investigating whether individual zebrafish are particularly over- or under-represented within 

each of the identified clusters. The identification of ILC-like populations required the analysis of thousands 

of cells from multiple zebrafish injected with either PBS, V. anguillarum, or A. simplex. In order to assign 

a likely donor ID to each cell we utilised somatic mutations present within transcripts to locate genomic 

sites which vary between cells (for details please see Materials and Methods). Using these sites, we 

assigned a genotype to each cell at each genomic site and subsequently clustered cells based on shared 

mutational profiles. This allowed us to assign each cell to a likely donor (Figure 5).  
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Our analysis revealed that within the ILC1-like clusters from each experiment there was a significant 

contribution from all donors (Figure 5). Given the size of the ILC1-like clusters (558 cells, 652 cells and 

677 cells in PBS-, V. anguillarum-  and A. simplex-injected zebrafish, respectively), the distribution of donor 

cells suggests that ILC1-like cells are a stable population of cells in zebrafish gut. Similar conclusions 

could be made about the nitr+rorc+ ILC population in PBS (123 cells) and the ILC3-like population of cells 

in V. anguillarum-injected zebrafish (195 cells). However, the ILC2-like cells within the A. simplex-injected 

zebrafish were only detectable in individual 2 and 3 suggesting that the stimulus was not strong enough 

to trigger response in individual 1.  

  

We also observed an unequal donor contribution across other clusters in PBS, V. anguillarum, or A. 

simplex-injected zebrafish. Interestingly, the genotype composition of clusters showed a more significant 

skew towards individual donors within the immune challenge experiments (Figure 5B, C) than for the PBS 

control (Figure 5A). In particular, cluster 3 (923 cells) within the V. anguillarum experiment seemed largely 

dominated by individual 3 (820 cells, 88.8%) whilst individual 1 (28 cells, 3%) and individual 2 (43 cells, 

4.6%) were less present. Conversely, in cluster 2 (1263 cells), individual 3 contributed 38 cells (3%) whilst 

individuals 1 and 2 contributed 420 (33.2%) and 771 (61%) cells respectively. Examining the transcriptional 

properties of these clusters showed that the two clusters are actually very similar (Figure 2). In addition, 

an analysis of A. simplex-injected zebrafish (clusters 1 and 3) yielded very similar results whereby the 

apparent disparity of individual 1 in cluster 3 is accounted for by the relative abundance of individual 1 

cells within the transcriptionally similar cluster 1. It is therefore possible that the two cell type clusters, 2 

and 3 in V. anguillarum- and 1 and 3 in A. simplex-injected zebrafish actually represent the functionally 

similar biological cell type and the observed differences correspond to individual immune response.  

  

 

Single cell atlas of innate and adaptive lymphocytes in zebrafish  

To allow easy retrieval of sequencing data from zebrafish innate and adaptive lymphocytes we generated 

a cloud repository (https://www.sanger.ac.uk/science/tools/lymphocytes/lymphocytes/) with transcriptional 

profiles of over 14,000 single cells collected from healthy and immune challenged zebrafish using 10x 

genomics and Smart-seq2 methodology (please see Explanatory Note in Supplementary Material).  

  

To capture the diversity of lymphoid cell types, we purified and sequenced the RNA from single cells 

collected from primary lymphoid organs (kidney and thymus), secondary lymphoid organs (spleen) as well 

as barrier tissues (gut and gills) of healthy, unstimulated adult zebrafish. We used three different transgenic 

lines: Tg(lck:EGFP) (55),  which labels T cells as well as NK cells (18);  Tg(cd4-1:mCherry) (56), which 

labels CD4 T cells and macrophages, and Tg(mhc2dab:GFP, cd45:dsRed) (57) (Figure S7A) that is 

expected to label B cells (when sorted as GFP+/DsRed-) (Table S3).  

  

We performed single-cell RNA sequencing (Smart-seq2) of reporter-positive cells; 542 cells out of 796 

passed quality control (QC) and were subjected to further analysis (Figure S8). Based on 3,374 highly 

variable genes inferred from biological cell-to-cell variation (Figure S9A), we generated Diffusion Maps 

and clustered cells within the 3D diffusion space. Our hierarchical clustering approach revealed three main 

populations. 

  

The cells in the first cluster (C1) appeared to be T cells with high expression of cd4-1, cd8a and lck (Figure 

S7B). As expected, cells in this cluster originated from cd4-1:mCherry and lck:EGFP transgenic cells 

collected from kidney, gills, gut, thymus and spleen (Figure S9B). To further confirm our computational 

prediction that cells in C1 are indeed T cells, we applied TraCeR (26). We were able to unambiguously 

detect V(D)J recombination events in 224 cells out of 362 (Figure S7C, Table S1) and all observed TCR 

rearrangements were different. The second cluster (C2) had a signature of B lymphocytes and cells in this 

cluster originated from kidneys of the Tg(mhc2dab:GFP, cd45:dsRed) line (Figure S9B,C). They showed 

expression of immunoglobulin-heavy variable 1-4 (ighv1-4), an orthologue of human immunoglobulin 

https://www.sanger.ac.uk/science/tools/lymphocytes/lymphocytes/)
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heavy constant mu gene (IGHM). Importantly, we detected BCR rearrangements in 36 cells from this 

cluster using BraCer, therefore confirming their B cell identity (58) (Figure S7C, Table S1). The cluster 

three (C3) was exclusively comprised of cells that originated from cd4-1:mCherry transgenic cells collected 

from gills, gut and spleen (Figure S9B, C). These cells had a high expression of macrophage receptor with 

collagenous structure (marco) and macrophage expressed gene 1 (mpeg1.1), strongly indicative of their 

macrophage identity. This was not surprising, as cd4-1:mCherry has been found to label both CD4 T cells 

and macrophages (56).  

  

Thus, single-cell RNA-Seq of lck:EGFP+, mhc2dab:GFP+/cd45:dsRed- and cd4-1:mCherry+ cells 

identified the adaptive lymphocytes in zebrafish, namely T and B cells, and their transcriptional signatures. 

Although these reporter lines might not label the entire spectrum of indicated cell types this is the most 

comprehensive transcriptional atlas of blood cell types in zebrafish to date. 

  

Discussion 

Our work provides a comprehensive atlas of both adaptive and innate lymphocytes across different organs 

in healthy and immune challenged zebrafish. Importantly, we identified populations of innate lymphocytes 

in rag1-deficient and wild-type zebrafish that resemble helper ILC subtypes in mammals. By analysing 

14,080 lck:EGFP+ single cells collected from gut of unstimulated and stimulated zebrafish, we discovered 

two previously unknown populations of rorc+ ILC-like cells in zebrafish, nitr+rorc+ and nitr-rorc+, which 

appear in some ways to recapitulate NCR+ ILC3 and NCR- ILC3 subsets, respectively, in humans and 

mice (5). We obtained functional insight into these two distinct populations of rorc+ cells by exposing adult 

zebrafish to specific stimuli that rapidly induce corresponding cytokines in the gut. 

 

The survey of cell surface receptors also suggested significant differences in the expression of cytokine 

receptors in ILC-like cells in zebrafish compared to their mammalian counterparts. Whereas both human 

and mouse ILCs constitutively express receptors for cytokines and are mainly activated by cytokines 

released by the epithelium or antigen presenting cells, in our dataset zebrafish nitr+rorc+ ILC-like cells 

express cytokine receptors in less than 10% of cells. More recently, other receptors such as aryl 

hydrocarbon receptor, Toll-like receptors, and other pattern recognition receptors, as well as NCRs have 

been reported to enable mouse and human ILC3 cells to directly sense environmental cues and induce 

cytokine expression (59, 60). Again, zebrafish ILC-like cells did not express the orthologues of these 

receptors but instead expressed NITRs. Teleost genomes contain multiple nitr genes which are considered 

to be the functional homologues of mammalian NCRs and killer cell immunoglobulin like receptors (KIRs) 

(40). However, our data should be interpreted in the light of methodology we used. Deeper sequencing or 

analysis of protein expression might provide additional information on the level of expression of various 

receptors in ILCs in zebrafish. Given the prominent expression of nitr genes in zebrafish ILCs, it remains 

to be seen whether and how these receptors modulate ILC functions. 

  

In addition to ILC3 cells, another population of Rorc-expressing ILCs has been identified in mammals - 

lymphoid tissue inducer cells (LTis) (61). LTis contribute to the formation of lymph nodes and gut-

associated lymphoid tissue, including Peyer’s patches, isolated lymphoid follicles and cryptopatches. 

Zebrafish gut does not have such organized lymphoid structures (62) and consequently it is presumed that 

they don’t have LTis (52). In our datasets, we identified a population of nitr-rorc+ cells that exclusively 

expressed tnfb, a zebrafish orthologue of human LTA, a marker gene for LTi cells. Although nitr-rorc+ 

share some transcriptional features with LTis it is hard to speculate on the function of nitr-rorc+ cells in 

zebrafish and whether they are evolutionarily linked with mammalian LTi cells. Interestingly, zebrafish nitr-

rorc+ cells expressed mcl1b which is pro-survival gene relevant for maintenance of viability but not of 

proliferation and is often expressed in long-lived cells (49–51).  

  

We also identified ifng producing cells. Zebrafish have two ifng genes (ifng1-1 and ifng1-2) which show 

mutually exclusive expression in our data set. The products of two ifng genes bind to different receptors in 
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zebrafish and are thus functionally specialized (63). The ifng1-2 was co-expressed with granzymes or 

granulysins in the population transcriptionally resembling NK-like cells. In contrast, ifng1-1 expressing cells 

had no expression of granzymes nor granulysins and thus represent a distinct subtype of innate 

lymphocytes, possibly ILC1-like cells. Similar to human ILCs from tonsils, ifng producing cells showed no 

expression of the Th1 master regulator T-bet (33). 

  

Like humans and mice, zebrafish appear to contain established ILC1-like population that responds to 

immune challenge. In addition, zebrafish have NK-like cells which are more numerous than helper ILCs in 

the gut of rag1 deficient zebrafish and show basal level of expression of ifng1-2. However, in contrast to 

mammals, zebrafish appear to display population of ILCs which do not produce detectable level cytokines 

in homeostasis. Circulating and tissue resident ILC precursors (ILCPs) in human and mouse also express 

Rorc at low level, and differentiate into multiple ILC subtypes in vitro (36, 37). ILCPs cannot be stimulated 

to produce effector cytokines; only already differentiated ILC1, ILC2 and ILC3 respond to immune 

challenge by producing relevant cytokines (36, 37). Indeed, scRNA-Seq of ILCs isolated from the gut of 

unstimulated mice (64) revealed that every subset of ILCs contained cells expressing cytokine transcripts, 

a feature we did not observe in PBS-injected zebrafish.  It remains possible, however, that due to the 

modest number of detected genes we were not able to detect low basal level of cytokine production in 

these cells. While we document several distinct populations of ILCs in this study, further studies are 

needed to understand if there are precursor-progenitor relationships and/or plasticity between these 

lineages.  Furthermore, our studies have focused on rag1-/- zebrafish. Developing tools would be essential 

for studying how ILCs cooperate with other lymphocytes to drive immune responses.   

 

  

Materials and Methods 

Study design 

The aim of this study was to characterised innate and adaptive lymphocytes in zebrafish in steady state 

and following the immune challenge, using scRNA-seq. Multiple zebrafish, either in steady state or 

exposed to immune challenge, were used to collect cells for sequencing. To verify that all cells were 

intermixed based on their transcriptional similarities, Principal Component Analysis (PCA) and diffusion 

maps were used. Following the sequencing zebrafish were genotyped using probabilistic PCA on single 

nucleotide polymorphisms (SNPs) identified based on de novo variant calling. 

  

Zebrafish strains and maintenance 

The maintenance of zebrafish wild-type line (AB), transgenic lines Tg(lck:EGFP) (55), Tg(cd4-1:mcherry) 

(56), Tg(mhc2dab:GFP, cd45:dsRed) (57) and rag1hu1999mutants (also known as rag1t26683/26683 (23)) was 

performed in accordance with EU regulations on laboratory animals. Hu1999 mutation results in a 

premature stop codon in the middle of the catalytic domain of the Rag1 protein and is considered a null 

allele (23).  

  

FACS sorting 

Kidneys from heterozygote transgenic zebrafish either wild-type or rag1-/- mutant, were dissected and 

processed as previously described (17). The guts, spleens, gills and thymuses were dissected and placed 

in ice cold PBS/5% foetal bovine serum. Single cell suspensions were generated by first passing through 

a 40 µm strainer using the plunger of a 1 ml syringe as a pestle. These were then passed through a 20 

µm strainer before adding 4',6-diamidino-2-phenylindole (DAPI, Beckman Coulter, cat no B30437) to the 

samples. For Smart-seq2 experiment individual cells were index sorted into 96 well plates using a BD 

Influx Index Sorter. Cells from kidney, gut, gills, spleen and thymus from non-transgenic zebrafish line 

were used for gating.    

  

For the 10x experiment, guts from either Tg(lck:EGFP) rag1-/- mutant or wild-type zebrafish were isolated 

and single cell suspensions were prepared as described above. Three zebrafish, per each condition (i.e. 
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zebrafish intraperitoneally injected with PBS, lyophilised Anisakis simplex or inactivated Vibrio 

anguillarum), were used to collect the total of 12,000 lck+cells (4000 per zebrafish) for 10x experiment.  

  

Plate-based single-cell RNA processing 

The Smart-seq2 protocol (65) was used for whole transcriptome amplification and library preparation as 

previously described. Generated libraries were sequenced in pair-end mode on Hi-Seq4000 platform. 

 

Droplet-based single-cell RNA processing  

Following the sorting, cells were spun down and resuspended in ice cold PBS with 0.04% bovine serum 

albumin at the concentration of 500 cells/μl. Libraries were constructed using Chromium™ Controller and 

Chromium™ Single Cell 3’ Library & Gel Bead Kit v2 (10x Genomics) according to the manufacturer’s 

protocol for 5000 cells recovery. Briefly, cellular suspension was added to the master mix containing 

nuclease-free water, RT Reagent Mix, RT Primer, Additive A and RT Enzyme Mix. Master mix with cells 

was transferred to the wells in the row labelled 1 on the Chromium™ Single Cell A Chip (10x Genomics). 

Single Cell 3’ Gel Beads were transferred into the row labelled 2 and Partitioning Oil was transferred into 

the row labelled 3. The chip was loaded on Chromium™ Controller to generate single-cell GEMs. GEM-

RT was performed in a C1000 Touch Thermal cycler (Bio-Rad) at the following conditions: 53°C for 45 

min, 85°C for 5 min, held at 4°C. Post GEM-RT cleanup was performed with DynaBeads MyOne Silane 

Beads (Thermo Fisher Scientific). cDNA was amplified using C1000 Touch Thermal cycler at the following 

conditions: 98°C for 3 min, 12 cycles of (90°C for 15 s, 67°C for 20 s and 72°C for 1 min), 72°C for 1 min, 

held 4°C. Amplified cDNA was cleaned with the SPRIselect Reagent Kit (Beckman Coulter) and quality 

was assessed using 2100 Bioanalyser (Agilent). Libraries were constructed following the manufacturer’s 

protocol and sequenced in pair-end mode on Hi-Seq4000 platform.   

  

Short-term inflammation experiments 

Vibrio anguillarum strain 1669 was grown in TSA broth medium to OD600 1.5. Bacterial pellet (9 mL of full 

grown culture) was resuspended in NaCl 9 g/L, 0.35% formaldehyde, and incubated overnight at 20°C. 

The suspension was washed four times in NaCl 9 g/l and resuspended in 800 μl of the same isotonic 

solution.  

  

Anisakis simplex larvae, extracted from wild herring (Clupea harengus), were lyophilized using a freeze 

dryer/lyophiliser Alpha 1-2 LD plus (Martin Christ) following manufacturer's instructions: samples were 

placed in glass vials with vented rubber caps, placed in a freeze dryer holding tray and placed at -80ºC 

until ready to lyophilise. The freeze dryer machine was cooled down before use and worms were exposed 

to lyophilisation for 18 hours at -44 ºC to -45ºC, and pressure at 0.071 to 0.076 mbar. Lyophilized larvae 

were homogenized in 1 mL PBS using a FastPrep-24 instrument (MP Biomedicals) with 1/4" ceramic 

sphere in 2 mL tubes for 20 seconds at 6 g.  

  

Five microliters of each extract were mixed with 15 μl of sterile PBS and transferred to a 1.5 mL Eppendorf 

tube. Micro-Fine U-100 insulin syringes were loaded with the suspension mix and injected intraperitoneally 

into the midline between the pelvic fins. 

  

RNA isolation and qPCR experiment 

RNA was isolated with Trizol reagent (Invitrogen) according to manufacturer’s instructions. One μg of RNA 

was reverse-transcribed using M-MLV Reverse Transcriptase Kit (Invitrogen). Real-time PCR was 

performed using Rox SYBR Green MasterMix dTTP Blue Kit (Takyon) and run on a QuantStudio 6 Flex 

Real-Time PCR System (Applied Biosystems).  

The following primers were used:  

ifng-1-1: forward, 5’- ACCAGCTGAATTCTAAGCCAA -3’ 

reverse, 5’-TTTTCGCCTTGACTGAGTGAA -3’  

ifng-1-2: forward, 5’- CATCGAAGAGCTCAAAGCTTACTA -3’  
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reverse, 5’-TGCTCACTTTCCTCAAGATTCA -3’  

tnfa: forward, 5’- TTCACGCTCCATAAGACCCA -3’  

reverse, 5’-CAGAGTTGTATCCACCTGTTA -3’ 

il13: forward, 5’- GAAGTGTGAGCATGATTATTTC -3’  

reverse, 5’-CTCGTCTTGGTGGTTGTAAG -3’  

il4: forward, 5’- CCTGACATATATGAGACAGGACACTAC -3’  

reverse, 5’-TTACCCTTCAAAGCCATTCC -3’ 

il17a/f3: forward, 5’- AAGATGTTCTGGTGTGAAGAAGTG -3’ 

reverse, 5’-ACCCAAGCTGTCTTTCTTTGAC -3’ 

il22: forward, 5’- TGCAGAATCACTGTAAACACGA -3’  

reverse, 5’-CTCCCCGATTGCTTTGTTAC -3’ 

cd3z: forward, 5’- CCGGTGGAGGAGTCTCATTA -3’  

reverse, 5’-CTCCAGATCTGCCCTCCTC -3’ 

ef1a: forward, 5’ - ACCTACCCTCCTCTTGGTCG - 3’ 

reverse, 5’ - GGAACGGTGTGATTGAGGGAA - 3’ 

  

Samples were analysed using ΔΔCt method. The mean Ct value of housekeeping gene (ef1a) was used 

for normalization. 2-ΔΔCt values were graphed with the geometric mean ±95% confidence intervals to 

estimate the fold change. The raw qPCR data for the short-term inflammation experiment can be found at 

the online repository, https://zenodo.org/record/1437804. 

  

Alignment and quantification of single-cell RNA-sequencing data 

For the samples that were processed using the Smart-seq2 protocol, the reads were aligned to the 

zebrafish reference genome (Ensemble BioMart version 89) combined with the sequences for EGFP, 

mCherry, mhc2dab and ERCC spike-ins. Salmon v0.8.2 (66) was used for both alignment and 

quantification of reads with the default paired-end parameters, while library type was set to inward (I) 

relative orientation (reads face each other) with unstranded (U) protocol (parameter –l IU). 

  

For the samples that were processed using the Chromium Single Cell 3’ protocol, Cell Ranger v2.1 was 

used in order to de-multiplex raw base call (BCL) files generated by Illumina sequencers into FASTQ files, 

perform the alignment, barcode counting, and UMI counting. Ensembl BioMart version 91 was used to 

generate the reference genome. 

  

Quality control of single-cell data 

For the Smart-seq2 protocol transcript per million (TPM) values reported by Salmon were used for the 

quality control (QC). Wells with fewer than 900 expressed genes (TPM > 1) or having more than either 

60% of ERCC or 45% of mitochondrial content were annotated as poor quality cells. As a result, 322 cells 

failed QC and 542 single cells were selected for the further study. 

  

Chromium Single Cell 3’ samples were filtered based on the Median Absolute Deviation (MAD) of the 

distribution of the number of detected genes. In addition, the percentage of mitochondrial content was set 

to less than 10%. Following QC, 3,211 single cells from the rag1-/-PBS-injected sample, 3,626 single cells 

from the rag1-/- A. simplex-injected samples, 3,487 single cells from the rag1-/- V. anguillarum-injected 

samples, and 3,756 from the rag1+/+ PBS-injected samples were used in downstream analysis. 

  

Downstream analysis of Smart-seq2 data 

For each of the 542 single cells, counts reported by Salmon were transformed into normalised counts per 

million (CPM) and used for the further analysis. This was performed by dividing the number of counts for 

each gene with the total number of counts for each cell and by multiplying the resulting number by a factor 

of 1,000,000. Genes that were expressed in less than 1% of cells (e.g. 5 single cells with CPM > 1) were 

filtered out. In the final step we ended up using 16,059 genes across the 542 single cells. The scran R 
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package (version 1.6.7) (67) was then used to normalise the data and remove differences due to the library 

size or capture efficiency and sequencing depth. 

  

In order to identify the highly variable genes (HVGs) we utilised the Brennecke Method (68). We inferred 

the noise model from the ERCCs and selected genes that vary higher than 20% percentage of variation. 

This was performed by using the “BrenneckeGetVariableGenes” command of M3Drop v1.4.0 R package 

setting fdr equal to 0.01 and minimum percentage of variance due to biological factors (minBiolDisp) equal 

to 0.2. In total, 3,374 were annotated as HVGs.   

  

To verify that all cells were intermixed (in the reconstructed 3D component space) based on their 

transcriptional similarities and not based on the zebrafish of origin, we used Principal Component Analysis 

(PCA) and diffusion maps (destiny R package (version 2.6.1)). 

  

The first 3 diffusion components were clustered using shared nearest neighbour (SNN) modularity 

optimization-based clustering algorithm implemented by Seurat Package. We used the "FindClusters" 

command. Three clusters were selected for the further analysis. 

  

BraCeR and TraCeR analysis  

We have used TraCeR (26) and BraCeR (58) tools in order to reconstruct the sequences of rearranged T 

and B cell receptor genes (TCR and BCR, respectively), from our Smart-seq2 single-cell RNA-seq data. 

In order to build combinatorial recombinomes (tracer/bracer build command) for the Danio rerio species, 

fasta files describing all V, J, C, D sequences were collected from the international ImMunoGeneTics 

information system (http://www.imgt.org) (69). For TCR, complete information of the alpha and beta chain 

location was available, while for the BCR, H and L location sequences were available. Using a threshold 

of 50 TPMs for gene expression, we identified a total of 244 single cells as TCR positive and 36 as BCR 

positive. 

  

Downstream analysis of 10x Genomics data 

The downstream analysis of the 10x data was performed using the Seurat (version 2.2.0) and the 

cellranger (version 1.1.0) R packages. Briefly, raw counts that passed the QC were centered by a factor 

of 1000 and log transformed. HVGs were detected based on their average expression against their 

dispersion, by means of the “FindVariableGenes” Seurat command with the following parameters: 

mean.function equal to ExpMean, dispersion.function equal to LogVMR, x.low.cutoff equal to 0.0125, 

x.high.cutoff equal to 3, and y.cutoff equal to 0.5. The number of HVGs across samples varied between 

1500 and 2500 genes, accordingly.  

  

HVGs were used for the calculation of the Principal Components (PCs) using Seurat’s “RunPCA” 

command. For the 3D tSNE transformation (“RunTSNE” command) we used PCs with JackStraw statistics 

lower than 0.01. The later statistics were estimated using the Seurat’s “JackStraw” command with 200 

replicate samplings. The proportion of the data that was randomly permuted for each replicate was set to 

1%. 

  

Clustering in the 3D tSNE space was performed (pheatmap version 1.0.8) using euclidean distance and 

centroid linkage. The silhouette scores were used to estimate the optimal number of clusters. However, 

the final decision on the number of clusters was made on case by case basis. Positive marker genes that 

expressed in at least half of genes within the cluster were calculated with “FindAllMarkers” Seurat 

command, using Wilcoxon rank sum test with threshold set to 0.25. DotPlots in Figures 2, 3 and 4 were 

generated using the Seurat’s “DotPlot” and “SplitDotPlotGG” command, respectively. 

  

Seurat Alignment Strategy 

http://www.imgt.org/
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In order to perform direct comparison of clusters that belong to the same cell type across different 

conditions, we adopted the Seurat Alignment workflow (48). We calculated Highly Variable Genes (HVGs), 

for each of the three different conditions, and selected 961 HVGs that were expressed in at least 2 

datasets. Canonical Correlation Analysis (CCA) was then performed in order to identify shared correlation 

structures across the different conditions using the “RunMultiCCA” command. Twenty significant CCA 

components were selected by means of the shared correlation strength, using the “MetageneBicorPlot” 

command. Aligned CCA space was then generated with the “AlignSubspace” Seurat command. Thirteen 

Clusters were identified using the shared nearest neighbor (SNN) modularity optimization based clustering 

algorithm (“FindClusters” command) on the 20 significant CCA aligned components at 0.5 resolution. 

Dotplot of genes at different clusters on the aligned data was generated by using the SplitDotPlotGG 

command. 

  

Barcode Extraction and Initial Variant Calling  

For each cell barcode, transcript extraction and indexing of the generated files was done using SAMtools 

package (https://github.com/samtools/samtools). The cellular data sets were merged for subsequent 

analysis. Variant genomic sites were identified de novo within each experiment condition through the use 

of the mpileup and call functions from the BCF tools package (https://github.com/samtools/bcftools). The 

resulting variant call format (VCF) file contained all genomic sites which showed variation amongst the 

transcripts from single cells. Poor quality variants were filtered out. 

  

Variant Calling per Cell 

For each experiment condition, the VCF file produced by the initial variant calling was used as a reference 

to genotype each cell at each quality-controlled variant site. The cellular VCFs were merged to create a 

single VCF file containing the genotype of each cell at each variant site identified in the experiment. The 

variants were filtered to exclude those variant sites present in less than 5% of cells. This resulted in 2592 

variants identified within the rag1-/- PBS-injected zebrafish, 2778 variants within the rag1-/- V. anguillarum-

injected zebrafish and 2879 variants within the rag1-/-A. simplex-injected zebrafish. 

  

Genotype Clustering  

To process the VCF file, the VariantAnnotation package (70) was used to filter out variants which did not 

originate from single-nucleotide polymorphisms (SNPs). Using the snpStats package (71), for each 

processed experiment (𝑁𝐶𝑒𝑙𝑙𝑠 × 𝑁𝑆𝑁𝑃𝑠) matrix was created containing the genotype of each cell at each 

variant site. Genotypes were numerically encoded as: 0 = Homozygous reference allele, 1 = Heterozygous, 

2 = Homozygous alternative allele, NA = Missing genotype. For dimensionality reduction of the matrix 

probabilistic PCA (72) from the pcaMethods package (73) was used and for clustering of the cells by 

principle component Mclust package (74) was used.  

  

All relevant scripts have been uploaded to an online repository at 

https://github.com/dhall1995/genotyping_scRNAseq. 

  

Statistics 

Statistical analyses were conducted using R, or Python, or GraphPad prism. The types of statistical tests 

and significance levels are described in respective figure legends. The results were considered statistically 

significant when p value was lower than .05 and were marked in the figures as: ****p < .0001; ***p < .001; 

**p < .01; *p < .05 

  

Supplementary Materials 

Table S1. TraCeR and BraCeR analysis. 

Table S2. Number of cells in each cluster across different experimental conditions (10x RNAseq data). 

Table S3. Index sorting data. 

Figure S1. Expression of marker genes in human ILCs 
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Figure S2. Quality control of 10x data 

Figure S3. Expression of marker genes in lck+ cells collected from rag1-/-gut 

Figure S4. t-SNE plots showing expression of marker genes in lck+ cells collected from rag1-/ -gut. 

Figure S5. Identification of nitr-rorc+ and nitr+rorc+ population of cells 

Figure S6. PBS - V. anguillarum- A. simplex-injected rag1-/- mutant zebrafish aligned data sets 

Figure S7. Identification of immune cell types in zebrafish during steady state haematopoiesis 

Figure S8. Quality control of SmartSeq2 data  

Figure S9. Clustering of Smart-seq2 data from Tg(lck:EGFP), Tg(cd4-1:mcherry)and Tg(mhc2dab:GFP, 

cd45:dsRed) zebrafish transgenic lines 
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Figure 1. Rag1-/- zebrafish have cytokine producing cells in the gut. A. Representative FACS plots 

showing the percentage of cells in the lymphocytes’ gate (as defined by FSC/SSC gating) in the gut of 

wild-type zebrafish (left) and rag1-/-mutant (right). B. Percentage of cells in the lymphocytes’ gate within 

50 000 recorded events in the gut of wild-type and rag1-/-mutant zebrafish. Bars represent the geometric 

mean ± 95% confidence interval to estimate total number of lymphocytes. Mann-Whitney test. C. qPCR 

expression of T cells associated markers (cd3z, trac) and lymphocytes’ markers (il7r, lck) in mutant and 

wild-type zebrafish. Bars represent the geometric mean ± 95% confidence interval to estimate fold 

changes. Mann-Whitney test. D. Scheme of short-term inflammation experiment. E. qPCR expression of 

immune type 1 (ifng1-1, ifng1-2), immune type 2 (il4, il13) and immune type 3 (il17a/f3, il22) signature 

cytokines in the gut of the wild-type (rag1+/+) and mutant (rag1-/-) zebrafish following six hours challenge 

with V. anguillarumor A. simplex. Bars represent the geometric mean ± 95% confidence interval to estimate 

fold changes. One-way ANOVA test. 

  

Figure 2. Analysis of the lck+cells, collected from the gut of rag1-/- zebrafish. 2D projection of tSNE 

analysis of 10x RNAseq data showing heterogeneity of innate lymphoid cells. Dotplots show the level of 

expression of marker genes and percentage of cells per cluster that express the gene of interest. 

  

Figure 3. Analysis of the lck+cells collected from the gut of wild-type zebrafish. A. 2D projection of 

tSNE analysis of 10x RNAseq data showing heterogeneity of innate and adaptive lymphocytes’ pool. B. 

Dotplot shows the level of expression of signature genes and percentage of cells per cluster that express 

the gene of interest.   

  

Figure 4. Integrated analysis of PBS - V. anguillarum- A. simplex-injected rag1-/- zebrafish. A. Dotplot 

with the expression level of selected marker genes in each of the clusters. The size of the dots indicates 

the percentage of cells within the cluster that express the gene of interest; each cluster contains cells from 

three different conditions. B. Volcano plot showing the top 20 differentially expressed genes between 

nitr+rorc+(Cluster 7) and nitr-rorc+(Cluster 13) cells originated from rag1-/- PBS-injected zebrafish using 

aligned dataset.  

  

Figure 5. Genotype clustering of cells from the rag1-/- PBS-,V. anguillarum- and A. simplex-injected 

zebrafish. The first three principal components were used and the clusters were generated using the 

probabilistic PCA algorithm. Individual 1 - violet colour; Individual 2 - green colour; Individual 3 - red colour; 

Undetermined - light violet colour. Bar plots showing frequency (log scaled) of different donor within the 

cell type clusters under different challenge conditions.  
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