16 research outputs found

    Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis

    Get PDF
    Aggregation is a sequence-specific process, nucleated by short aggregation-prone regions (APRs) that can be exploited to induce aggregation of proteins containing the same APR. Here, we find that most APRs are unique within a proteome, but that a small minority of APRs occur in many proteins. When aggregation is nucleated in bacteria by such frequently occurring APRs, it leads to massive and lethal inclusion body formation containing a large number of proteins. Buildup of bacterial resistance against these peptides is slow. In addition, the approach is effective against drug-resistant clinical isolates of Escherichiacoli and Acinetobacterbaumannii, reducing bacterial load in a murine bladder infection model. Our results indicate that redundant APRs are weak points of bacterial protein homeostasis and that targeting these may be an attractive antibacterial strategy

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference

    Chapter 5: Ovid

    No full text

    Outbreak of Zika virus infection in Singapore: an epidemiological, entomological, virological, and clinical analysis

    No full text
    Background An outbreak of Zika virus infection was detected in Singapore in August, 2016. We report the first comprehensive analysis of a national response to an outbreak of Zika virus infection in Asia. Methods In the first phase of the outbreak, patients with suspected Zika virus infection were isolated in two national referral hospitals until their serum tested negative for the virus. Enhanced vector control and community engagement measures were deployed in disease clusters, including stepped-up mosquito larvicide and adulticide use, community participation in source reduction (destruction of mosquito breeding sites), and work with the local media to promote awareness of the outbreak. Clinical and epidemiological data were collected from patients with confirmed Zika virus infection during the first phase. In the second phase, admission into hospitals for isolation was stopped but vector control efforts continued. Mosquitoes were captured from areas with Zika disease clusters to assess which species were present, their breeding numbers, and to test for Zika virus. Mosquito virus strains were compared with human strains through phylogenetic analysis after full genome sequencing. Reproductive numbers and inferred dates of strain diversification were estimated through Bayesian analyses. Findings From Aug 27 to Nov 30, 2016, 455 cases of Zika virus infection were confirmed in Singapore. Of 163 patients with confirmed Zika virus infection who presented to national referral hospitals during the first phase of the outbreak, Zika virus was detected in the blood samples of 97 (60%) patients and the urine samples of 157 (96%) patients. There were 15 disease clusters, 12 of which had high Aedes aegypti breeding percentages. Captured mosquitoes were pooled into 517 pools for Zika virus screening; nine abdomen pools (2%) were positive for Zika virus, of which seven head and thorax pools were Zika-virus positive. In the phylogenetic analysis, all mosquito sequences clustered within the outbreak lineage. The lineage showed little diversity and was distinct from other Asian lineages. The estimated most recent common ancestor of the outbreak lineage was from May, 2016. With the deployment of vector control and community engagement measures, the estimated reproductive number fell from 3·62 (95% CI 3·48–3·77) for July 31 to Sept 1, 2016, to 1·22 (95% CI 1·19–1·24) 4 weeks later (Sept 1 to Nov 24, 2016). Interpretation The outbreak shows the ease with which Zika virus can be introduced and spread despite good baseline vector control. Disease surveillance, enhanced vector control, and community awareness and engagement helped to quickly curb further spread of the virus. These intensive measures might be useful for other countries facing the same threat

    Compounds of Order I

    No full text

    Opening the black box of the relationship between HRM practices and firm performance: A comparison of MNE subsidiaries in the USA, Finland, and Russia

    No full text
    This paper investigates the extent to which different human resource management (HRM) practices work better in different countries. We also try to open the black box between HRM and multinational enterprise (MNE) subsidiary performance by considering mechanisms through which HRM practices affect MNE subsidiary performance. The study utilizes a unique data set consisting of subsidiaries of 241 MNEs operating in Russia, USA, and Finland. In the partial least-square analysis used to examine our hypotheses, we demonstrate that different HRM practices are preferable in different countries, and that motivation and ability are important mediating variables in the HRM–MNE subsidiary performance relationship. Journal of International Business Studies (2009) 40, 690–712. doi:10.1057/jibs.2008.83
    corecore