48 research outputs found

    Determinants of Specific Binding of HMGB1 Protein to Hemicatenated DNA Loops

    Get PDF
    Protein HMGB1 has long been known as one of the most abundant non-histone proteins in the nucleus of mammalian cells, and has regained interest recently for its function as an extracellular cytokine. As a DNA-binding protein, HMGB1 facilitates DNA–protein interactions by increasing the flexibility of the double helix, and binds specifically to distorted DNA structures. We have previously observed that HMGB1 binds with extremely high affinity to a novel DNA structure, hemicatenated DNA loops (hcDNA), in which double-stranded DNA fragments containing a tract of poly(CA)·poly(TG) form a loop maintained at its base by a hemicatenane. Here, we show that the single HMGB1 domains A and B, the HMG-box domain of sex determination factor SRY, as well as the prokaryotic HMGB1-like protein HU, specifically interact with hcDNA (Kd0.5 nM). However, the affinity of full-length HMGB1 for hcDNA is three orders of magnitude higher (Kd<0.5 pM) and requires the simultaneous presence of both HMG-box domains A and B plus the acidic C-terminal tail on the molecule. Interestingly, the high affinity of the full-length protein for hcDNA does not decrease in the presence of magnesium. Experiments including a comparison of HMGB1 binding to hcDNA and to minicircles containing the CA/TG sequence, binding studies with HMGB1 mutated at intercalating amino acid residues (involved in recognition of distorted DNA structures), and exonuclease III footprinting, strongly suggest that the hemicatenane, not the DNA loop, is the main determinant of the affinity of HMGB1 for hcDNA. Experiments with supercoiled CA/TG-minicircles did not reveal any involvement of left-handed Z-DNA in HMGB1 binding. Our results point to a tight structural fit between HMGB1 and DNA hemicatenanes under physiological conditions, and suggest that one of the nuclear functions of HMGB1 could be linked to the possible presence of hemicatenanes in the cell

    Evolutionarily distant I domains can functionally replace the essential ligand-binding domain of Plasmodium TRAP

    Get PDF
    Inserted (I) domains function as ligand-binding domains in adhesins that support cell adhesion and migration in many eukaryotic phyla. These adhesins include integrin alpha beta heterodimers in metazoans and single subunit transmembrane proteins in apicomplexans such as TRAP in Plasmodium and MIC2 in Toxoplasma. Here we show that the I domain of TRAP is essential for sporozoite gliding motility, mosquito salivary gland invasion and mouse infection. Its replacement with the I domain from Toxoplasma MIC2 fully restores tissue invasion and parasite transmission, while replacement with the aXI domain from human integrins still partially restores liver infection. Mutations around the ligand binding site allowed salivary gland invasion but led to inefficient transmission to the rodent host. These results suggest that apicomplexan parasites appropriated polyspecific I domains in part for their ability to engage with multiple ligands and to provide traction for emigration into diverse organs in distant phyla

    “That little doorway where I could suddenly start shouting out”: barriers and enablers to the disclosure of distressing voices

    Get PDF
    Hearing distressing voices is a key feature of psychosis. The time between voice onset and disclosure may be crucial as voices can grow in complexity. This study investigated barriers and enablers to early voice disclosure. Interviews with 20 voice hearers underwent Thematic Analysis. Beliefs about the effect of disclosure on self and others acted as a barrier and enabler to voices being discussed. Voice hearing awareness should be increased amongst young people, the public and care services. To support earlier disclosure measures need to increase skill amongst those likely to be disclosed to

    Relating therapy for voices (the R2V study): study protocol for a pilot randomized controlled trial

    Get PDF
    Background Evidence exists for the effectiveness of cognitive behaviour therapy for psychosis with moderate effect sizes, but the evidence for cognitive behaviour therapy specifically for distressing voices is less convincing. An alternative symptom-based approach may be warranted and a body of literature has explored distressing voices from an interpersonal perspective. This literature has informed the development of relating therapy and findings from a case series suggested that this intervention was acceptable to hearers and therapists. Methods/Design An external pilot randomized controlled trial (RCT) comparing outcomes for 15 patients receiving 16 hours (weekly sessions of one hour) of relating therapy and their usual treatment with 15 patients receiving only their usual treatment. Participants will be assessed using questionnaires at baseline, 16 weeks (post-intervention), and 36 weeks (follow-up). Discussion Expected outcomes will include a refined study protocol and an estimate of the effect size to inform the sample size of a definitive RCT. If evidence from a fully powered RCT suggests that relating therapy is effective, the therapy will extend the range of evidence-based psychological therapies available to people who hear distressing voices

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    ‘Remembering as Forgetting’: Organizational commemoration as a politics of recognition

    Get PDF
    This paper considers the politics of how organizations remember their past through commemorative settings and artefacts. Although these may be seen as ‘merely’ a backdrop to organizational activity, they form part of the lived experience of organizational spaces that its members enact on a daily basis as part of their routes and routines. The main concern of the paper is with how commemoration is bound up in the reflection and reproduction of hierarchies of organizational recognition. Illustrated with reference to two commemorative settings, the paper explores how organizations perpetuate a narrow set of symbolic ideals attributing value to particular forms of organizational membership while appearing to devalue others. In doing so, they communicate values that undermine attempts to achieve equality and inclusion. Developing a recognition-based critique of this process, the discussion emphasizes how commemorative settings and practices work to reproduce established patterns of exclusion and marginalization. To this end, traditional forms of commemorative portraiture that tend to close off difference are contrasted with a memorial garden, in order to explore the potential for an alternative, recognition-based ethics of organizational commemoration that is more open to the Other

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Probing the ligand preferences of the three types of bacterial pantothenate kinase

    No full text
    Pantothenate kinase (PanK) catalyzes the transformation of pantothenate to 4′-phosphopantothenate, the first committed step in coenzyme A biosynthesis. While numerous pantothenate antimetabolites and PanK inhibitors have been reported for bacterial type I and type II PanKs, only a few weak inhibitors are known for bacterial type III PanK enzymes. Here, a series of pantothenate analogues were synthesized using convenient synthetic methodology. The compounds were exploited as small organic probes to compare the ligand preferences of the three different types of bacterial PanK. Overall, several new inhibitors and substrates were identified for each type of PanK

    Antiplasmodial Mode of Action of Pantothenamides: Pantothenate Kinase Serves as a Metabolic Activator Not as a Target

    No full text
    N-Substituted pantothenamides (PanAms) are pantothenate analogues with up to nanomolar potency against blood-stage Plasmodium falciparum (the most virulent species responsible for malaria). Although these compounds are known to target coenzyme A (CoA) biosynthesis and/or utilization, their exact mode of action (MoA) is still unknown. Importantly, PanAms that retain the natural β-alanine moiety are more potent than other variants, consistent with the involvement of processes that are selective for pantothenate (the precursor of CoA) or its derivatives. The transport of pantothenate and its phosphorylation by P. falciparum pantothenate kinase (PfPanK, the first enzyme of CoA biosynthesis) are two such processes previously highlighted as potential targets for the PanAms’ antiplasmodial action. In this study, we investigated the effect of PanAms on these processes using their radiolabeled versions (synthesized here for the first time), which made possible the direct measurement of PanAm uptake by isolated blood-stage parasites and PanAm phosphorylation by PfPanK present in parasite lysates. We found that the MoA of PanAms does not involve interference with pantothenate transport and that inhibition of PfPanK-mediated pantothenate phosphorylation does not correlate with PanAm antiplasmodial activity. Instead, PanAms that retain the β-alanine moiety were found to be metabolically activated by PfPanK in a selective manner, forming phosphorylated products that likely inhibit other steps in CoA biosynthesis or are transformed into CoA antimetabolites that can interfere with CoA utilization. These findings provide direction for the ongoing development of CoA-targeted inhibitors as antiplasmodial agents with clinical potentialThis project was funded by grants from the South African Malaria Initiative to E.S. and K.J.S. M.deV., C.J.M., L.B., and G.W. were supported by bursaries/fellowships from the National Research Foundation (NRF) of South Africa. C.S. was funded by an NHMRC Overseas Biomedical Fellowship (1016357). Support from the Oppenheimer Memorial Trust (to M.deV. and E.S.) and Australia Awards, an Initiative of the Australian Government (to C.J.M.), made visits to the ANU possible and are gratefully acknowledged

    A Pantetheinase-Resistant Pantothenamide with Potent, On Target, and Selective Antiplasmodial Activity

    No full text
    Pantothenamides inhibit blood-stage Plasmodium falciparum with potencies (50% inhibitory concentration [IC50], 20 nM) similar to that of chloroquine. They target processes dependent on pantothenate, a precursor of the essential metabolic cofactor coenzyme A. However, their antiplasmodial activity is reduced due to degradation by serum pantetheinase. Minor modification of the pantothenamide structure led to the identification of -methyl-N-phenethyl-pantothenamide, a pantothenamide resistant to degradation, with excellent antiplasmodial activity (IC50, 52 6 nM), target specificity, and low toxicity.
    corecore