30 research outputs found

    Preclinical extracranial aneurysm models for the study and treatment of brain aneurysms: A systematic review.

    Get PDF
    Animal models make an important contribution to our basic understanding of the pathobiology of human brain aneurysms, are indispensable in testing novel treatment approaches, and are essential for training interventional neuroradiologists and neurosurgeons. Researchers are confronted with a broad diversity of models and techniques in various species. This systematic review aims to summarize and categorize extracranial aneurysm models and their characteristics, discuss advantages and disadvantages, and suggest the best use of each model. We searched the electronical Medline/PubMed database between 1950 and 2020 to identify main models and their refinements and technical modifications for creation of extracranial aneurysms. Each study included was assessed for aneurysm-specific characteristics, technical details of aneurysm creation, and histological findings. Among more than 4000 titles and abstracts screened, 473 studies underwent full-text analysis. From those, 68 different techniques/models in five different species were identified, analyzed in detail, and then grouped into one of the five main groups of experimental models as sidewall, terminal, stump, bifurcation, or complex aneurysm models. This systematic review provides a compact guide for investigators in selecting the most appropriate model from a range of techniques to best suit their experimental goals, practical considerations, and laboratory environment

    Preclinical Intracranial Aneurysm Models: A Systematic Review.

    Get PDF
    Intracranial aneurysms (IA) are characterized by weakened cerebral vessel walls that may lead to rupture and subarachnoid hemorrhage. The mechanisms behind their formation and progression are yet unclear and warrant preclinical studies. This systematic review aims to provide a comprehensive, systematic overview of available animal models for the study of IA pathobiology. We conducted a systematic literature search using the PubMed database to identify preclinical studies employing IA animal models. Suitable articles were selected based on predefined eligibility criteria following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Included studies were reviewed and categorized according to the experimental animal and aneurysm model. Of 4266 returned results, 3930 articles were excluded based on the title and/or abstract and further articles after screening the full text, leaving 123 studies for detailed analysis. A total of 20 different models were found in rats (nine), mice (five), rabbits (four), and dogs (two). Rat models constituted the most frequently employed intracranial experimental aneurysm model (79 studies), followed by mice (31 studies), rabbits (12 studies), and two studies in dogs. The most common techniques to induce cerebral aneurysms were surgical ligation of the common carotid artery with subsequent induction of hypertension by ligation of the renal arteries, followed by elastase-induced creation of IAs in combination with corticosterone- or angiotensin-induced hypertension. This review provides a comprehensive summary of the multitude of available IA models to study various aspects of aneurysm formation, growth, and rupture. It will serve as a useful reference for researchers by facilitating the selection of the most appropriate model and technique to answer their scientific question

    Saccular Aneurysm Models Featuring Growth and Rupture: A Systematic Review.

    Get PDF
    BACKGROUND Most available large animal extracranial aneurysm models feature healthy non-degenerated aneurysm pouches with stable long-term follow-ups and extensive healing reactions after endovascular treatment. This review focuses on a small subgroup of extracranial aneurysm models that demonstrated growth and potential rupture during follow-up. METHODS The literature was searched in Medline/Pubmed to identify extracranial in vivo saccular aneurysm models featuring growth and rupture, using a predefined search strategy in accordance with the PRISMA guidelines. From eligible studies we extracted the following details: technique and location of aneurysm creation, aneurysm pouch characteristics, time for model creation, growth and rupture rate, time course, patency rate, histological findings, and associated morbidity and mortality. RESULTS A total of 20 articles were found to describe growth and/or rupture of an experimentally created extracranial saccular aneurysm during follow-up. Most frequent growth was reported in rats (n = 6), followed by rabbits (n = 4), dogs (n = 4), swine (n = 5), and sheep (n = 1). Except for two studies reporting growth and rupture within the abdominal cavity (abdominal aortic artery; n = 2) all other aneurysms were located at the neck of the animal. The largest growth rate, with an up to 10-fold size increase, was found in a rat abdominal aortic sidewall aneurysm model. CONCLUSIONS Extracranial saccular aneurysm models with growth and rupture are rare. Degradation of the created aneurysmal outpouch seems to be a prerequisite to allow growth, which may ultimately lead to rupture. Since it has been shown that the aneurysm wall is important for healing after endovascular therapy, it is likely that models featuring growth and rupture will gain in interest for preclinical testing of novel endovascular therapies

    Aspirin treatment prevents inflammation in experimental bifurcation aneurysms in New Zealand White rabbits.

    Get PDF
    BACKGROUND Aneurysm wall degeneration is linked to growth and rupture. To address the effect of aspirin (ASA) on aneurysm formation under various wall conditions, this issue was analyzed in a novel rabbit bifurcation model. METHODS Bifurcation aneurysms created in 45 New Zealand White rabbits were randomized to vital (n=15), decellularized (n=13), or elastase-degraded (n=17) wall groups; each group was assigned to a study arm with or without ASA. At follow-up 28 days later, aneurysms were evaluated for patency, growth, and wall inflammation at macroscopic and histological levels. RESULTS 36 rabbits survived to follow-up at the end of the trial. None of the aneurysms had ruptured. Patency was visualized in all aneurysms by intraoperative fluorescence angiography and confirmed in 33 (92%) of 36 aneurysms by MRI/MRA. Aneurysm size was significantly increased in the vital (without ASA) and elastase-degraded (with and without ASA) groups. Aneurysm thrombosis was considered complete in three (50%) of six decellularized aneurysms without ASA by MRI/MRA. Locoregional inflammation of the aneurysm complex was significantly reduced in histological analysis among all groups treated with ASA. CONCLUSION ASA intake prevented inflammation of both the periadventitial tissue and aneurysm wall, irrespective of initial wall condition. Although ASA prevented significant growth in aneurysms with vital walls, this preventive effect did not have an important role in elastase-degraded pouches. In possible translation to the clinical situation, ASA might exert a potential preventive effect during early phases of aneurysm formation in patients with healthy vessels but not in those with highly degenerative aneurysm walls

    Testing bioresorbable stent feasibility in a rat aneurysm model.

    Get PDF
    BACKGROUND Advances in stent-assisted coiling have incrementally expanded endovascular treatment options for complex cerebral aneurysms. After successful coil consolidation and aneurysm occlusion, endovascular scaffolds are no longer needed. Thus, bioresorbable stents that disappear after aneurysm healing could avoid future risks of in-stent thrombosis and the need for lifelong antiplatelet therapy. OBJECTIVE To assess the applicability and compatibility of a bioresorbable magnesium- alloy stent (brMAS) for assisted coiling. METHODS Saccular sidewall aneurysms were created in 84 male Wistar rats and treated with brMAS alone, brMAS + aspirin, or brMAS + coils + aspirin. Control groups included no treatment (natural course), solely aspirin treatment, or conventional cobalt-chromium stent + coils + aspirin treatment. After 1 and 4 weeks, aneurysm specimens were harvested and macroscopically, histologically, and molecularly examined for healing, parent artery perfusion status, and inflammatory reactions. Stent degradation was monitored for up to 6 months with micro-computed and optical coherence tomography. RESULTS Aneurysms treated with brMAS showed advanced healing, neointima formation, and subsequent stent degradation. Additional administration of aspirin sustained aneurysm healing while reducing stent-induced intraluminal and periadventitial inflammatory responses. No negative interaction was detected between platinum coils and brMAS. Progressive brMAS degradation was confirmed. CONCLUSIONS brMAS induced appropriate healing in this sidewall aneurysm model. The concept of using bioresorbable materials to promote complete aneurysm healing and subsequent stent degradation seems promising. These results should encourage further device refinements and clinical evaluation of this treatment strategy for cerebrovascular aneurysms

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    The Role of Sartans in the Treatment of Stroke and Subarachnoid Hemorrhage: A Narrative Review of Preclinical and Clinical Studies.

    Get PDF
    Background: Delayed cerebral vasospasm (DCVS) due to aneurysmal subarachnoid hemorrhage (aSAH) and its sequela, delayed cerebral ischemia (DCI), are associated with poor functional outcome. Endothelin-1 (ET-1) is known to play a major role in mediating cerebral vasoconstriction. Angiotensin-II-type-1-receptor antagonists such as Sartans may have a beneficial effect after aSAH by reducing DCVS due to crosstalk with the endothelin system. In this review, we discuss the role of Sartans in the treatment of stroke and their potential impact in aSAH. Methods: We conducted a literature research of the MEDLINE PubMed database in accordance with PRISMA criteria on articles published between 1980 to 2019 reviewing: "Sartans AND ischemic stroke". Of 227 studies, 64 preclinical and 19 clinical trials fulfilled the eligibility criteria. Results: There was a positive effect of Sartans on ischemic stroke in both preclinical and clinical settings (attenuating ischemic brain damage, reducing cerebral inflammation and infarct size, increasing cerebral blood flow). In addition, Sartans reduced DCVS after aSAH in animal models by diminishing the effect of ET-1 mediated vasoconstriction (including cerebral inflammation and cerebral epileptogenic activity reduction, cerebral blood flow autoregulation restoration as well as pressure-dependent cerebral vasoconstriction). Conclusion: Thus, Sartans might play a key role in the treatment of patients with aSAH

    Comparison of Aneurysm Patency and Mural Inflammation in an Arterial Rabbit Sidewall and Bifurcation Aneurysm Model under Consideration of Different Wall Conditions.

    Get PDF
    Background: Biological processes that lead to aneurysm formation, growth and rupture are insufficiently understood. Vessel wall inflammation and degeneration are suggested to be the driving factors. In this study, we aimed to investigate the natural course of vital (non-decellularized) and decellularized aneurysms in a rabbit sidewall and bifurcation model. Methods: Arterial pouches were sutured end-to-side on the carotid artery of New Zealand White rabbits (vital [n = 6] or decellularized [n = 6]), and into an end-to-side common carotid artery bifurcation (vital [n = 6] and decellularized [n = 6]). Patency was confirmed by fluorescence angiography. After 28 days, all animals underwent magnetic resonance and fluorescence angiography followed by aneurysm harvesting for macroscopic and histological evaluation. Results: None of the aneurysms ruptured during follow-up. All sidewall aneurysms thrombosed with histological inferior thrombus organization observed in decellularized compared to vital aneurysms. In the bifurcation model, half of all decellularized aneurysms thrombosed whereas the non-decellularized aneurysms remained patent with relevant increase in size compared to baseline. Conclusions: Poor thrombus organization in decellularized sidewall aneurysms confirmed the important role of mural cells in aneurysm healing after thrombus formation. Several factors such as restriction by neck tissue, small dimensions and hemodynamics may have prevented aneurysm growth despite pronounced inflammation in decellularized aneurysms. In the bifurcation model, rarefication of mural cells did not increase the risk of aneurysm growth but tendency to spontaneous thrombosis
    corecore