16 research outputs found

    Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sub-clinical variant Creutzfeldt-Jakob disease (vCJD) infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrP<sup>Sc</sup>), although achieving required sensitivity is a challenge.</p> <p>Methods</p> <p>We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS), which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples.</p> <p>Results</p> <p>Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system.</p> <p>Conclusion</p> <p>ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems.</p

    Renewing the Exploration Approach for Mid-Enthalpy Systems: Examples from Northern England and Scotland

    Get PDF
    After a promising start in the 1970s and 80s, the UK rather fell behind other countries in the search for viable mid-enthalpy geothermal resources. This situation began to turn around in 2004, when the first of three deep geothermal exploration boreholes were drilled in northern England. What distinguished these from earlier drilling in Cornwall was the deliberate search for naturallyhigh permeability associated with major faults, especially those that have undergone strike-slip reactivation during the Cenozoic. Boreholes at Eastgate in the North Pennines targeted buried radiothermal granite, whereas the 1,821m-deep Science Central Borehole in Newcastle upon Tyne targeted a postulated deep sedimentary aquifer (the Fell Sandstones), which were inferred to be connected laterally to the granitic heat source by a major fault (the reactivation of the Iapetus geo-suture). The drilling was in both cases rewarded with impressive heat flows, and in the case of Eastgate with what is believed to be the highest permeability yet found in a deep granite batholith anywhere in the world. In parallel with these developments, a re-assessment was made of the preexisting geothermal heat flow database for the UK, applying newly-standardised correction protocols for palaeoclimatic and topographic distortions, which were found to be particularly marked in Scotland (where only shallow boreholes had been used to establish geothermal gradients in the original 1980s analysis), Similar prospects in northern England (similar to that drilled at Science Central) are now the focus of commercial exploration efforts. Appraisal of fault dispositions relative to the present-day maximum compressive stress azimuth are being used to identify the most promising areas for intersecting fault-related permeability at depth. New geophysical tools – most notably atomic dielectric resonance scanning – are also being appraised for their ability to directly detect features (such as hot brines) which are indicative of localised convection in target fault zones and aquifers

    Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD"</p><p>http://www.translational-medicine.com/content/5/1/41</p><p>Journal of Translational Medicine 2007;5():41-41.</p><p>Published online 30 Aug 2007</p><p>PMCID:PMC2008164.</p><p></p>D over sCJD, particularly from 3000 MHz to 25000 MHz and is again a useful diagnostic indicator of differences

    Renewing the Exploration Approach for Mid-Enthalpy Geothermal Systems: Examples from Northern England and Scotland

    No full text
    ABSTRACT After a promising start in the 1970s and 80s, the UK rather fell behind other countries in the search for viable mid-enthalpy geothermal resources. This situation began to turn around in 2004, when the first of three deep geothermal exploration boreholes were drilled in northern England. What distinguished these from earlier drilling in Cornwall was the deliberate search for naturallyhigh permeability associated with major faults, especially those that have undergone strike-slip reactivation during the Cenozoic. Boreholes at Eastgate in the North Pennines targeted buried radiothermal granite, whereas the 1,821m-deep Science Central Borehole in Newcastle upon Tyne targeted a postulated deep sedimentary aquifer (the Fell Sandstones), which were inferred to be connected laterally to the granitic heat source by a major fault (the reactivation of the Iapetus geo-suture). The drilling was in both cases rewarded with impressive heat flows, and in the case of Eastgate with what is believed to be the highest permeability yet found in a deep granite batholith anywhere in the world. In parallel with these developments, a re-assessment was made of the preexisting geothermal heat flow database for the UK, applying newly-standardised correction protocols for palaeoclimatic and topographic distortions, which were found to be particularly marked in Scotland (where only shallow boreholes had been used to establish geothermal gradients in the original 1980s analysis), Similar prospects in northern England (similar to that drilled at Science Central) are now the focus of commercial exploration efforts. Appraisal of fault dispositions relative to the present-day maximum compressive stress azimuth are being used to identify the most promising areas for intersecting fault-related permeability at depth. New geophysical tools -most notably atomic dielectric resonance scanning -are also being appraised for their ability to directly detect features (such as hot brines) which are indicative of localised convection in target fault zones and aquifers. INTRODUCTION After a promising start in geothermal exploration and resource quantification in the 1970s and 1980s (Downing and Gray 1986a,b

    The fibroblast-derived paracrine factor neuregulin-1 has a novel role in regulating the constitutive color and melanocyte function in human skin

    No full text
    Interactions between melanocytes and neighboring cells in the skin are important in regulating skin color in humans. We recently demonstrated that the less pigmented and thicker skin on the palms and soles is regulated by underlying fibroblasts in those areas, specifically via a secreted factor (DKK1) that modulates Wnt signaling. In this study, we tested the hypothesis that dermal fibroblasts regulate the constitutive skin color of individuals ranging from very light to very dark. We used microarray analysis to compare gene expression patterns in fibroblasts derived from lighter skin types compared to darker skin types, with a focus on secreted proteins. We identified a number of genes that differ dramatically in expression and, among the expressed proteins, neuregulin-1, which is secreted by fibroblasts derived from dark skin, effectively increases the pigmentation of melanocytes in tissue culture and in an artificial skin model and regulates their growth, suggesting that it is one of the major factors determining human skin color
    corecore