326 research outputs found

    Grid Approach to Path Integral Monte Carlo Calculations

    Get PDF
    Approach taken for the gridification of the developed Monte Carlo code for calculation of path integrals is described. Brief introduction to path integrals and Grids is given, and details on the implementation of SPEEDUP in the Grid environment are described. The numerical results obtained by the gridified version of the application are shortly presented, demonstrating its usefulness in the research in physics and related areas

    Road salt emissions: A comparison of measurements and modelling using the NORTRIP road dust emission model

    Get PDF
    AbstractDe-icing of road surfaces is necessary in many countries during winter to improve vehicle traction. Large amounts of salt, most often sodium chloride, are applied every year. Most of this salt is removed through drainage or traffic spray processes but a certain amount may be suspended, after drying of the road surface, into the air and will contribute to the concentration of particulate matter. Though some measurements of salt concentrations are available near roads, the link between road maintenance salting activities and observed concentrations of salt in ambient air is yet to be quantified. In this study the NORTRIP road dust emission model, which estimates the emissions of both dust and salt from the road surface, is applied at five sites in four Nordic countries for ten separate winter periods where daily mean ambient air measurements of salt concentrations are available. The model is capable of reproducing many of the salt emission episodes, both in time and intensity, but also fails on other occasions. The observed mean concentration of salt in PM10, over all ten datasets, is 4.2 μg/m3 and the modelled mean is 2.8 μg/m3, giving a fractional bias of −0.38. The RMSE of the mean concentrations, over all 10 datasets, is 2.9 μg/m3 with an average R2 of 0.28. The mean concentration of salt is similar to the mean exhaust contribution during the winter periods of 2.6 μg/m3. The contribution of salt to the kerbside winter mean PM10 concentration is estimated to increase by 4.1 ± 3.4 μg/m3 for every kg/m2 of salt applied on the road surface during the winter season. Additional sensitivity studies showed that the accurate logging of salt applications is a prerequisite for predicting salt emissions, as well as good quality data on precipitation. It also highlights the need for more simultaneous measurements of salt loading together with ambient air concentrations to help improve model parameterisations of salt and moisture removal processes

    Expanded national database collection and data coverage in the FINDbase worldwide database for clinically relevant genomic variation allele frequencies

    Get PDF
    FINDbase (http://www.findbase.org) is a comprehensive data repository that records the prevalence of clinically relevant genomic variants in various populations worldwide, such as pathogenic variants leading mostly to monogenic disorders and pharmacogenomics biomarkers. The database also records the incidence of rare genetic diseases in various populations, all in well-distinct data modules. Here, we report extensive data content updates in all data modules, with direct implications to clinical pharmacogenomics. Also, we report significant new developments in FINDbase, namely (i) the release of a new version of the ETHNOS software that catalyzes development curation of national/ethnic genetic databases, (ii) the migration of all FINDbase data content into 90 distinct national/ethnic mutation databases, all built around Microsoft’s PivotViewer (http://www.getpivot.com) software (iii) new data visualization tools and (iv) the interrelation of FINDbase with DruGeVar database with direct implications in clinical pharmacogenomics. The above mentioned updates further enhance the impact of FINDbase, as a key resource for Genomic Medicine applications

    Small Extracellular Vesicles from Peripheral Blood of Aged Mice Pass the Blood-Brain Barrier and Induce Glial Cell Activation

    Get PDF
    Extracellular vesicles (EVs), including small EVs (sEVs), are involved in neuroinflammation and neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Yet, increased neuroinflammation can also be detected in the aging brain, and it is associated with increased glial activation. Changes in EV concentration are reported in aging tissues and senescence cells, suggesting a role of EVs in the process of aging. Here, we investigated the effect of peripheral sEVs from aged animals on neuroinflammation, specifically on glial activation. sEVs were isolated from the peripheral blood of young (3 months) and aged (24 months) C57BL/6J wildtype mice and injected into the peripheral blood from young animals via vein tail injections. The localization of EVs and the expression of selected genes involved in glial cell activation, including Gfap , Tgf- β , Cd68 , and Iba1 , were assessed in brain tissue 30 min, 4 h, and 24 h after injection. We found that sEVs from peripheral blood of aged mice but not from young mice altered gene expression in the brains of young animals. In particular, the expression of the specific astrocyte marker, Gfap , was significantly increased, indicating a strong response of this glial cell type. Our study shows that sEVs from aged mice can pass the blood-brain barrier (BBB) and induce glial cell activation

    Diverse structural approaches to haem appropriation by pathogenic bacteria

    Get PDF
    The critical need for iron presents a challenge for pathogenic bacteria that must survive in an environment bereft of accessible iron due to a natural low bioavailability and their host's nutritional immunity. Appropriating haem, either direct from host haemoproteins or by secreting haem-scavenging haemophores, is one way pathogenic bacteria can overcome this challenge. After capturing their target, haem appropriation systems must remove haem from a high-affinity binding site (on the host haemoprotein or bacterial haemophore) and transfer it to a binding site of lower affinity on a bacterial receptor. Structural information is now available to show how, using a combination of induced structural changes and steric clashes, bacteria are able to extract haem from haemophores, haemopexin and haemoglobin. This review focuses on structural descriptions of these bacterial haem acquisition systems, summarising how they bind haem and their target haemoproteins with particularly emphasis on the mechanism of haem extraction

    Untreated PKU patients without intellectual disability: What do they teach us?

    Get PDF
    Phenylketonuria (PKU) management is aimed at preventing neurocognitive and psychosocial dysfunction by keeping plasma phenylalanine concentrations within the recommended target range. It can be questioned, however, whether universal plasma phenylalanine target levels would result in optimal neurocognitive outcomes for all patients, as similar plasma phenylalanine concentrations do not seem to have the same consequences to the brain for each PKU individual. To better understand the inter-individual differences in brain vulnerability to high plasma phenylalanine concentrations, we aimed to identify untreated and/or late-diagnosed PKU patients with near-normal outcome, despite high plasma phenylalanine concentrations, who are still alive. In total, we identified 16 such cases. While intellectual functioning in these patients was relatively unaffected, they often did present other neurological, psychological, and behavioral problems. Thereby, these “unusual” PKU patients show that the classical symptomatology of untreated or late-treated PKU may have to be rewritten. Moreover, these cases show that a lack of intellectual dysfunction despite high plasma phenylalanine concentrations does not necessarily imply that these high phenylalanine concentrations have not been toxic to the brain. Also, these cases may suggest that different mechanisms are involved in PKU pathophysiology, of which the relative importance seems to differ between patients and possibly also with increasing age. Further research should aim to better distinguish PKU patients with respect to their cerebral effects to high plasma phenylalanine concentrations

    Structural analysis of haemoglobin binding by HpuA from the Neisseriaceae family

    Get PDF
    The Neisseriaceae family of bacteria causes a range of diseases including meningitis, septicaemia, gonorrhoea and endocarditis, and extracts haem from haemoglobin as an important iron source within the iron-limited environment of its human host. Herein we report crystal structures of apo- and haemoglobin-bound HpuA, an essential component of this haem import system. The interface involves long loops on the bacterial receptor that present hydrophobic side chains for packing against the surface of haemoglobin. Interestingly, our structural and biochemical analyses of Kingella denitrificans and Neisseria gonorrhoeae HpuA mutants, although validating the interactions observed in the crystal structure, show how Neisseriaceae have the fascinating ability to diversify functional sequences and yet retain the haemoglobin binding function. Our results present the first description of HpuA’s role in direct binding of haemoglobin

    Host Iron Binding Proteins Acting as Niche Indicators for Neisseria meningitidis

    Get PDF
    Neisseria meningitidis requires iron, and in the absence of iron alters its gene expression to increase iron acquisition and to make the best use of the iron it has. During different stages of colonization and infection available iron sources differ, particularly the host iron-binding proteins haemoglobin, transferrin, and lactoferrin. This study compared the transcriptional responses of N. meningitidis, when grown in the presence of these iron donors and ferric iron, using microarrays

    Heme Degrading Protein HemS Is Involved in Oxidative Stress Response of Bartonella henselae

    Get PDF
    Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe3+uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H2O2 induced oxidative stress
    corecore