62 research outputs found

    A mobile detector for measurements of the atmospheric muon flux in underground sites

    Full text link
    Muons comprise an important contribution of the natural radiation dose in air (approx. 30 nSv/h of a total dose rate of 65-130 nSv/h), as well as in underground sites even when the flux and relative contribution are significantly reduced. The flux of the muons observed in underground can be used as an estimator for the depth in mwe (meter water equivalent) of the underground site. The water equivalent depth is an important information to devise physics experiments feasible for a specific site. A mobile detector for performing measurements of the muon's flux was developed in IFIN-HH, Bucharest. Consisting of 2 scintillator plates (approx. 0.9 m2) which measure in coincidence, the detector is installed on a van which facilitates measurements at different locations at surface or underground. The detector was used to determine muon fluxes at different sites in Romania. In particular, data were taken and the values of meter water equivalents were assessed for several locations from the salt mine from Slanic Prahova, Romania. The measurements have been performed in 2 different galleries of the Slanic mine at different depths. In order to test the stability of the method, also measure- ments of the muon flux at surface at different elevations were performed. The results were compared with predictions of Monte-Carlo simulations using the CORSIKA and MUSIC codes

    Structure property relationship of suspension thermally sprayed WC-Co nanocomposite coatings.

    Get PDF
    Tribomechanical properties of nanostructured coatings deposited by suspension high velocity oxy-fuel (S-HVOF) and conventional HVOF (Jet Kote) spraying were evaluated. Nanostructured S-HVOF coatings were obtained via ball milling of the agglomerated and sintered WC-12Co feedstock powder, which were deposited via an aqueous-based suspension using modified HVOF (TopGun) process. Microstructural evaluations of these hardmetal coatings included transmission electron microscopy, x-ray diffraction, and scanning electron microscopy equipped with energy dispersive x-ray spectroscopy. The nanohardness and modulus of the coated specimens were investigated using a diamond Berkovich nanoindenter. Sliding wear tests were conducted using a ball-on-flat test rig. Results indicated that low porosity coatings with nanostructured features were obtained. High carbon loss was observed, but coatings showed a high hardness up to 1000 HV2.9N. S-HVOF coatings also showed improved sliding wear and friction behavior, which were attributed to nanosized particles reducing ball wear in three-body abrasion and support of metal matrix due to uniform distribution of nanoparticles in the coating microstructure

    The LBNO long-baseline oscillation sensitivities with two conventional neutrino beams at different baselines

    Get PDF
    The proposed Long Baseline Neutrino Observatory (LBNO) initially consists of 20\sim 20 kton liquid double phase TPC complemented by a magnetised iron calorimeter, to be installed at the Pyh\"asalmi mine, at a distance of 2300 km from CERN. The conventional neutrino beam is produced by 400 GeV protons accelerated at the SPS accelerator delivering 700 kW of power. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/EL/E behaviour, and distinguishing effects arising from δCP\delta_{CP} and matter. In this paper we show how this comprehensive physics case can be further enhanced and complemented if a neutrino beam produced at the Protvino IHEP accelerator complex, at a distance of 1160 km, and with modest power of 450 kW is aimed towards the same far detectors. We show that the coupling of two independent sub-MW conventional neutrino and antineutrino beams at different baselines from CERN and Protvino will allow to measure CP violation in the leptonic sector at a confidence level of at least 3σ3\sigma for 50\% of the true values of δCP\delta_{CP} with a 20 kton detector. With a far detector of 70 kton, the combination allows a 3σ3\sigma sensitivity for 75\% of the true values of δCP\delta_{CP} after 10 years of running. Running two independent neutrino beams, each at a power below 1 MW, is more within today's state of the art than the long-term operation of a new single high-energy multi-MW facility, which has several technical challenges and will likely require a learning curve.Comment: 21 pages, 12 figure

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Comparação termohigrométrica de sub-altitude em área urbana e rural em São Carlos, Brasil, por meio de VANT/DRONE.

    Get PDF
    A Radiossondagem de sub-altitude tem como objetivo mensurar os dados climatológicos em vários níveis verticais da atmosfera por meio de um equipamento denominado radiossonda. Além do mais, é conhecido que os diferentes tipos de uso e ocupação do solo (urbano, industrial, rural, florestal) alteram o balanço de energia entre a superfície e a atmosfera. Dessa forma, o estudo proposto tem como objetivo analisar e comparar os valores de temperatura e umidade relativa do ar próximo a superfície (1,5m de altura) e em diferentes alturas (50m e 190m da superfície) em área urbana e rural no município de São Carlos, Brasil, no período noturno em episódios de inverno, por meio de termohigrômetros acoplados em um Veículo Aéreo Não-Tripulado (Vant/Drone) do tipo quadricóptero (quatro hélices). O voo na área urbana foi realizado no dia 13/07/2018 e na área rural no dia 26/07/2018 entre 19:30 e 20:30. Os resultados demonstraram que na área urbana em períodos noturnos a temperatura e umidade relativa do ar são maiores próxima a superfície em relação aos dados de sub-altitude. Já na área rural em períodos noturnos a temperatura do ar é menor e a umidade relativa do ar é maior próximo a superfície em comparação aos dados de sub-altitude

    GaN and InN Nanowires: Growth and Optoelectronic Properties

    No full text
    Self-assembled GaN and InN nanowires (NWs) were synthesized by radio frequency Plasma-Assisted Molecular Beam Epitaxy (PAMBE) without external catalyst. NWs of micrometers length and diameter in the range of 20–200 nm are fabricated using this method under N-rich conditions. Driving mechanisms of the NW nucleation and the growth are discussed. The NWs have been investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and photoluminescence (PL). Electric and photoelectric measurements on single wire devices have been performed as well. We establish that the dark, Ultraviolet (UV) photo-current and band-edge absorption tails in GaN NWs are strongly dependent on wire diameter. A model of surface Fermi level pinning and Franz-Keldysh effect in carrier depletion region at wire surface were used to explain the observed behaviors. InN NWs show infrared (IR) photoluminescence strongly dependent on the growth parameters. High electron concentration of 1018 – 1019 cm−3 was evaluated from line shape analysis of PL spectra. The Fermi level pinning at the surface corresponds to a surface accumulation layer. To modify the surface of InN NWs, core-shell InN/GaN NWs were grown. In this paper we focus on the influence of surface effects on the growth and properties of GaN and InN nanowires

    Surface-induced effects in GaN nanowires

    No full text
    corecore