361 research outputs found

    An Evaluation of the Sensitivity of Subjects with Peanut Allergy to Very Low Doses of Peanut Protein: A Randomized, Double-Blind, Placebo-Controlled Food Challenge Study

    Get PDF
    The minimum dose of food protein to which subjects with food allergy have reacted in double-blind, placebo-controlled food challenges is between 50 and 100 mg. However, subjects with peanut allergy often report severe reactions after minimal contact with peanuts, even through intact skin. Objective: We sought to determine whether adults previously proven by challenge to be allergic to peanut react to very low doses of peanut protein. Methods: We used a randomized, double-blind, placebo-controlled food challenge of 14 subjects allergic to peanuts with doses of peanut ranging from 10 μg to 50 mg, administered in the form of a commercially available peanut flour. Results: One subject had a systemic reaction to 5 mg of peanut protein, and two subjects had mild objective reactions to 2 mg and 50 mg of peanut protein, respectively. Five subjects had mild subjective reactions (1 to 5 mg and 4 to 50 mg). All subjects with convincing objective reactions had short-lived subjective reactions to preceding doses, as low as 100 μg in two cases. Five subjects did not react to any dose up to 50 mg. Conclusion: Even in a group of well-characterized, highly sensitive subjects with peanut allergy, the threshold dose of peanut protein varies. As little as 100 μg of peanut protein provokes symptoms in some subjects with peanut allergy

    Nova-like Cataclysmic Variables in the Infrared

    Get PDF
    Novalike cataclysmic variables have persistently high mass transfer rates and prominent steady state accretion disks. We present an analysis of infrared observations of twelve novalikes obtained from the Two Micron All Sky Survey, the Spitzer Space Telescope, and the Wide-field Infrared Survey Explorer All Sky Survey. The presence of an infrared excess at >3-5 microns over the expectation of a theoretical steady state accretion disk is ubiquitous in our sample. The strength of the infrared excess is not correlated with orbital period, but shows a statistically significant correlation (but shallow trend) with system inclination that might be partially (but not completely) linked to the increasing view of the cooler outer accretion disk and disk rim at higher inclinations. We discuss the possible origin of the infrared excess in terms of emission from bremsstrahlung or circumbinary dust, with either mechanism facilitated by the mass outflows (e.g., disk wind/corona, accretion stream overflow, and so on) present in novalikes. Our comparison of the relative advantages and disadvantages of either mechanism for explaining the observations suggests that the situation is rather ambiguous, largely circumstantial, and in need of stricter observational constraints.Peer reviewe

    Venus Landsailer Zephyr

    Get PDF
    Imagine sailing across the hot plains of Venus! A design for a craft to do just this was completed by the COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team for the NASA Innovative Advanced Concepts (NIAC) project. The robotic craft could explore over 30 kilometers of the surface of Venus, driven by the power of the wind. The Zephyr Venus Landsailer is a science mission concept for exploring the surface of Venus with a mobility and science capability roughly comparable to the Mars Exploration Rovers (MER) mission, but using the winds of the thick atmosphere of Venus for propulsion. It would explore the plains of Venus in the year 2025, near the Venera 10 landing site, where wind velocities in the range of 80 to 120 centimeters per second (cm/s) were measured by earlier Soviet landing missions. These winds are harnessed by a large wing/sail which would also carry the solar cells to generate power. At around 250 kilograms (kg), Zephyr would carry an 8 meter tall airfoil sail (12 square meters area), 25 kg of science equipment (mineralogy, grinder, and weather instruments) and return 2 gigabytes of science over a 30 day mission. Due to the extreme temperatures (450 degrees Centigrade) and pressures (90 bar) on Venus, Zephyr would have only basic control systems (based on high temperature silicon carbide (SiC)electronics) and actuators. Control would come from an orbiter which is in turn controlled from Earth. Due to the time delay from the Earth a robust control system would need to exist on the orbiter to keep Zephyr on course. Data return and control would be made using a 250 megahertz link with the orbiter with a maximum data rate of 2 kilobits per second. At the minimal wind speed required for mobility of 35 cm/s, the vehicle move at a slow but steady 4 cm/s by positioning the airfoil and use of one wheel that is steered for pointing control. Navigation commands from the orbiter will be based upon navigation cameras, simple accelerometers and stability sensors; Zephyr's stability is robust, using a wide wheel base along with controls to "feather" or "luff" the airfoil and apply brakes to stop the vehicle in the case of unexpected conditions. This would be the science gathering configuration. The vehicle itself would need to be made from titanium (Ti) as the structural material, with a corrosion-barrier overcoating due to extreme temperatures on the surface

    Neuroendocrine carcinoma arising in soft tissue: three case reports and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroendocrine tumours (NET) are tumours arising from neuroendocrine cells of neural crest origin. They are characterised by the presence of neurosecretory granules which react positively to silver stains and to specific markers including neuron specific enolase, synaptophysin and chromogranin. Metastasis to the skin occurs infrequently but primary soft tissue NET is excessively rare.</p> <p>Case presentation</p> <p>We report our experience with 3 such cases. In the first case, the NET originated in muscle and was treated with wide surgical excision and adjuvant radiotherapy. The second case presented as a subcutaneous mass in the foot and the tumour was positive on <sup>123</sup>I mIBG scan. She has had prolonged recurrence-free survival following primary hypo-fractionated radiotherapy. In the third case, a cutaneous nodule proved to be a NET and at surgery, lymph node disease was present. He has remained disease-free after surgical excision without the need for external beam radiotherapy.</p> <p>Conclusion</p> <p>These tumours appear to have a good prognosis. Complete excision offers potentially curative treatment. Adjuvant radiotherapy may be helpful when the tumour margin is narrow. For patients with unresectable disease or where surgery would not be appropriate, radiotherapy appears to be an effective therapeutic option.</p

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Evaluation of exercise on individuals with dementia and their carers: a randomised controlled trial

    Get PDF
    Background Almost all of the 820,000 people in the UK with dementia will experience Behavioural and Psychological Symptoms of Dementia (BPSD). However, research has traditionally focused on treating cognitive symptoms, thus neglecting core clinical symptoms that often have a more profound impact on living with dementia. Recent evidence (Kales et al, 2007; Ballard et al, 2009) indicates that the popular approach to managing BPSD - prescription of anti-psychotic medication - can increase mortality and the risk of stroke in people with dementia as well as impair quality of life and accelerate cognitive decline. Consequently, there is a need to evaluate the impact that non-pharmacological interventions have on BPSD; we believe physical exercise is a particularly promising approach. Methods/Design We will carry out a pragmatic, randomised, single-blind controlled trial to evaluate the effectiveness of exercise (planned walking) on the behavioural and psychological symptoms of individuals with dementia. We aim to recruit 146 people with dementia and their carers to be randomized into two groups; one will be trained in a structured, tailored walking programme, while the other will continue with treatment as usual. The primary outcome (BPSD) will be assessed with the Neuropsychiatric Inventory (NPI) along with relevant secondary outcomes at baseline, 6 and 12 weeks. Discussion Designing this study has been challenging both ethically and methodologically. In particular to design an intervention that is simple, measurable, safe, non-invasive and enjoyable has been testing and has required a lot of thought. Throughout the design, we have attempted to balance methodological rigour with study feasibility. We will discuss the challenges that were faced and overcome in this paper

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore