80 research outputs found

    Towards dielectric relaxation at a single molecule scale

    Get PDF
    Dielectric relaxation lies at the heart of well-established techniques of dielectric spectroscopy essential to diverse fields of research and technology. We report an experimental route for increasing the sensitivity of dielectric spectroscopy ultimately towards the scale of a single molecule. We use the method of radio frequency scanning tunneling microscopy to excite a single molecule junction based on a polar substituted helicene molecule by an electric field oscillating at 2–5 GHz. We detect the dielectric relaxation of the single molecule junction indirectly via its effect of power dissipation, which causes lateral displacement. From our data we determine a corresponding relaxation time of about 300 ps—consistent with literature values of similar helicene derivatives obtained by conventional methods of dielectric spectroscopy.publishedVersio

    Surface faceting and reconstruction of ceria nanoparticles

    Get PDF
    The surface atomic arrangement of metal oxides determines their physical and chemical properties, and the ability to control and optimize structural parameters is of crucial importance for many applications, in particular in heterogeneous catalysis and photocatalysis. Whereas the structures of macroscopic single crystals can be determined with established methods, for nanoparticles (NPs), this is a challenging task. Herein, we describe the use of CO as a probe molecule to determine the structure of the surfaces exposed by rod-shaped ceria NPs. After calibrating the CO stretching frequencies using results obtained for different ceria single-crystal surfaces, we found that the rod-shaped NPs actually restructure and expose {111} nanofacets. This finding has important consequences for understanding the controversial surface chemistry of these catalytically highly active ceria NPs and paves the way for the predictive, rational design of catalytic materials at the nanoscale.Postprint (author's final draft

    Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy

    Get PDF
    Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the materiala € s band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materialsWork supported by the NIMS (AA002 and AF006 projects), by the MEXT KAKENHI Grant Number 26104540, by the Charles University (GAUK 339311) and by the Spanish MINECO (projects PLE2009-0061, MAT2011- 023627 and CSD2010-00024). Computer time was provided by the Spanish Supercomputing Network (RES, Spain) at the MareNostrum III Supercomputer (BCS, Barcelona), and by the PRACE initiative (project RA0986) at the Curie Supercomputer (CEA, France). O.S and V.M. thank the Charles University-NIMS International Cooperative Graduate School Program. J.W.R. thanks NIMS for funding through the NIMS Internship Program and ICIQ for his ICIQ Fellowshi

    Experimental control of Ce3+ concentration in ceria based model catalysts

    No full text
    Concentration of Ce3+ is one of the most important parameters that influence the reactivity of ceria based catalyst. In this work we examine different experimental approaches for controlling Ce3+ concentration in cerium oxide model catalyst systems such as: i) influencing the stoichiometry of ceria, ii) introducing high valence doping agent, and iii) growing ultra thin ceria films with a strong metal substrate interaction. Structure, morphology and chemical state of prepared reduced ceria based systems were examined by means of surface science techniques: scanning tunneling microscopy, low-energy electron diffraction and X-ray photoelectron spectroscopy. In the present work an original method of ceria film reduction was introduced that allows stepwise control on stoichiometry and degree of film reduction (i). Further we introduce preparation procedures for well-ordered tungsten doped ceria model system (ii) and for the high quality 2D ultrathin ceria system on Cu (1 1 1) (iii). Preparation methods and model systems introduced in this work incorporate different physicochemical principles of Ce3+ induction and provide a variety of model systems useful for examining different effects that diversely prepared Ce3+ ions have on the activity of the catalyst

    Charakterizace modelových CeO2 a TiO2 systémů pomocí rastrovací tunelové mikroskopie a mikroskopie atomárních sil

    No full text
    Atomic scale characterization of materials is important for the fundamental understanding of their properties. Here, model systems of industrially relevant cerium and titanium oxides are characterized with the combination of the Scanning Tunneling Microscopy (STM) and Non Contact Atomic Force Microscopy (NC AFM). Cerium oxide model systems are represented by fully oxidized and partially reduced ultra-thin ceria films supported on copper single crystal. Interaction of the model ceria systems with catalytically important adsorbates (water, methanol) is studied on atomic scale. Titanium oxide model systems are represented by pentacene and C60 molecules adsorbed on the surface of bulk titania in anatase polymorph. Organic layers on titania are studied with intramolecular resolution with the help of the newly developed Double pass scanning mode of NC AFM. The atomic contrast formation mechanisms in STM and NC AFM on ceria and anatase surface are presented. Powered by TCPDF (www.tcpdf.org)Charakterizace materialu na atomarni urovni je nepostradatelna pro zakladni vyzkum jejich vlastnosti. V teto praci jsou charakterizovany modelove systemy technologicky dulezitych oxidu ceru a titanu kombinaci rastrovaci tunelove mikroskopie (STM) a bezkontaktni mikroskopie atomarnich sil (NC AFM). Modelove systemy oxidu ceru jsou ve forme tenkych vrstev oxidovaneho a redukovaneho oxidu ceru na monokrystalu medi. Je studovana interakce techto modelovych systemu s adsorbaty dulezitymi pro heterogenni katalyzu (voda, metanol) na atomarni urovni. Modelove systemy oxidu titanu jsou ve forme molekul C60 a pentacenu adsorbovanych na povrchu monokrystalu oxidu titanu - anatase. Tyto organicke tenke vrstvy na oxidu titanu jsou studovany s intramolekularnim rozlisenim pomoci nove vyvinute merici metody dvoupruchodoveho rastrovani v NC AFM. Je predstaveno take vysvetleni vzniku atomarniho kontrastu na povrsich oxidu ceru a titanu v STM i NC AFM. Powered by TCPDF (www.tcpdf.org)Katedra fyziky povrchů a plazmatuDepartment of Surface and Plasma ScienceFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Experimentální kontrola koncentrace iontů Ce3+ v modeloých katalyzátorech na bázi oxidu ceru

    No full text
    Koncentrace iontů Ce3+ je jeden z nejvýznamnějších parametrů ovlivňujících reaktivitu katalyzátorů na bázi oxidu ceru. V této práci jsou zkoumány různé experimentální přístupy pro kontrolu koncentrace iontů Ce3+ v modelových katalyzátorech na bázi oxidu ceru: i) ovlivňování stechiometrie oxidu ceru, ii) dopování prvkem s vysokou valencí a iii) růst ultra-tenkých vrstev oxidu ceru se silnou interakcí s kovovým substrátem. Struktura, morfologie a chemický stav připravených tenkovrstvých systémů na bázi redukovaného oxidu ceru jsou zkoumány pomocí metod povrchové analýzy: rastrovací tunelové mikroskopie, difrakce nízkoenergetických elektronů a rentgenové fotoelektronové spektroskopie. V předkládané práci je prezentována originální metoda redukce oxidu ceru, která umožňuje přesnou kontrolu stechiometrie a stupně redukce oxidu ceru (i). Dále jsou představeny metody pro přípravu vysoce uspořádané wolframem dopované tenké vrstvy oxidu ceru (ii) a vysoce kvalitní 2D ultratenké vrstvy oxidu ceru na Cu (1 1 1) (iii). Metody přípravy a modelové systémy představené v této práci zahrnují různé fyzikálněchemické principy vzniku iontů Ce3+ a poskytují výběr modelových systémů užitečných pro studium vlivu iontů Ce3+ s rozdílným původem na reaktivitu zkoumaných katalyzátorů.Concentration of Ce3+ is one of the most important parameters that influence the reactivity of ceria based catalyst. In this work we examine different experimental approaches for controlling Ce3+ concentration in cerium oxide model catalyst systems such as: i) influencing the stoichiometry of ceria, ii) introducing high valence doping agent, and iii) growing ultra thin ceria films with a strong metal substrate interaction. Structure, morphology and chemical state of prepared reduced ceria based systems were examined by means of surface science techniques: scanning tunneling microscopy, low-energy electron diffraction and X-ray photoelectron spectroscopy. In the present work an original method of ceria film reduction was introduced that allows stepwise control on stoichiometry and degree of film reduction (i). Further we introduce preparation procedures for well-ordered tungsten doped ceria model system (ii) and for the high quality 2D ultrathin ceria system on Cu (1 1 1) (iii). Preparation methods and model systems introduced in this work incorporate different physicochemical principles of Ce3+ induction and provide a variety of model systems useful for examining different effects that diversely prepared Ce3+ ions have on the activity of the catalyst.Katedra fyziky povrchů a plazmatuDepartment of Surface and Plasma ScienceMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    Investigating model CeO2 and TiO2 systems by means of Scanning Tunneling Microscopy and Atomic Force Microscopy

    No full text
    Atomic scale characterization of materials is important for the fundamental understanding of their properties. Here, model systems of industrially relevant cerium and titanium oxides are characterized with the combination of the Scanning Tunneling Microscopy (STM) and Non Contact Atomic Force Microscopy (NC AFM). Cerium oxide model systems are represented by fully oxidized and partially reduced ultra-thin ceria films supported on copper single crystal. Interaction of the model ceria systems with catalytically important adsorbates (water, methanol) is studied on atomic scale. Titanium oxide model systems are represented by pentacene and C60 molecules adsorbed on the surface of bulk titania in anatase polymorph. Organic layers on titania are studied with intramolecular resolution with the help of the newly developed Double pass scanning mode of NC AFM. The atomic contrast formation mechanisms in STM and NC AFM on ceria and anatase surface are presented. Powered by TCPDF (www.tcpdf.org
    corecore