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Atomic species identification at the (101) anatase
surface by simultaneous scanning tunnelling
and atomic force microscopy
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Ruben Perez3,10 & Oscar Custance1

Anatase is a pivotal material in devices for energy-harvesting applications and catalysis.

Methods for the accurate characterization of this reducible oxide at the atomic scale are

critical in the exploration of outstanding properties for technological developments. Here

we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM),

supported by first-principles calculations, for the simultaneous imaging and unambiguous

identification of atomic species at the (101) anatase surface. We demonstrate that dynamic

AFM-STM operation allows atomic resolution imaging within the material’s band gap. Based

on key distinguishing features extracted from calculations and experiments, we identify

candidates for the most common surface defects. Our results pave the way for the under-

standing of surface processes, like adsorption of metal dopants and photoactive molecules,

that are fundamental for the catalytic and photovoltaic applications of anatase, and

demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap

materials.
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T
itanium dioxide (TiO2) is an important material in a
number of energy-related applications such as photocata-
lytic water splitting1,2 and the conversion of solar energy to

electricity3,4. This material is also used for surface anticorrosion,
water purification and decomposition of organic pollutants5,6.
Most of these applications rely on nanocrystalline TiO2 samples
that consist principally of two polymorphs: anatase and rutile. In
some commercial TiO2 samples, anatase nano-crystals account
for up to 75% of the product7. Anatase is generally regarded as
having a higher surface reactivity than rutile and, for nano
particles with diameters o11 nm, it is more stable than rutile5. In
contrast to the performance of rutile, the extraordinary mobility
and low recombination rate of photo-induced charges found in
anatase accounts for a high-power conversion efficiency in solar
cells8 and a considerable enhancement of the photocatalytic
production of hydrogen9. Considering that anatase nano-crystals
are the more abundant and reactive components in TiO2 samples
used as the active phase in commercial catalysts, there is still a
relatively scarce amount of experimental studies on anatase
surfaces in comparison with rutile. More research is required to
better understand the surface properties that define anatase as
such a good photocatalyst. The real space characterization of
anatase substrates at the atomic scale and, in particular, the
understanding of the structure of the common defects and their
role in the surface chemistry and charge transport properties, is
essential to elucidate the basic principles that govern
photocatalytic and photovoltaic applications of this TiO2

polymorph.
Transmission electron microscopy can provide atomic scale

images of micro- and nano-scale anatase crystals10 even close to
photocatalytic reaction conditions11, while scanning tunnelling
microscopy12 (STM) is the common choice to study the atomic
structure13,14 and defects15,16 of anatase surfaces, as well as the
properties and behaviour of adsorbates17–20. Atomic force
microscopy21 (AFM) has recently also shown considerable
potential to study the properties of rutile surfaces with atomic
resolution22–29. While the phenomenology of rutile has been
extensively studied at atomic scale over several decades with both
STM and AFM, the amount of information regarding the

properties of anatase surfaces is still scarce. At a very
fundamental level, there is still debate regarding the
contribution of the different atoms populating the anatase
surface to the STM images13,30. There is a clear need for
further experimental insight to support STM-based observations
on anatase, and yet there have been no atomic resolution AFM
studies to date.

In this work, we simultaneously apply dynamic AFM and STM
(see Methods) to study anatase (101); the energetically most
stable facet of this TiO2 polymorph. Such a combination of
techniques, together with the use of individual water molecules as
atomic markers, provides a clear way to experimentally identify
the atomic species populating this surface: while AFM images the
topmost oxygen atoms, the main contribution to the averaged
tunnelling current (the STM signal in our experiments) comes
from the titanium atoms at the third atomic layer. First-principles
simulations of the tip–surface interaction confirm this identifica-
tion, present a plausible description of the forefront part of the
experimental probe and reveal the role of atomic relaxation
effects in the AFM contrast formation. From our simulations of
realistic surface detects, we extract dominant attributes to identify
candidates of subsurface oxygen vacancies and surface hydroxyls
from an extensive collection of dynamic AFM-STM images
acquired over multiple measurement sessions.

Results
Simultaneous dynamic AFM-STM imaging. Figure 1a shows the
general morphology of the TiO2(101) anatase surface measured
with AFM. Characteristic triangular and truncated trapezoidal
terraces and islands are clearly observed, in good agreement with
previous STM results14. Typical atomic scale AFM and averaged
tunnelling current31 (oIt4) images are characterized by rows of
signal maxima running along the [010] crystallographic direction
(Fig. 1b–e). We have identified two typical atomic patterns in
AFM images: pattern A (Fig. 1b) displaying clear ovals along the
rows of protrusions; and pattern B (Fig. 1d) showing almost
featureless bright rows, and accounting for B10% incidence. The
variability for the oIt4 images is wider (see also Supplementary
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Figure 1 | Simultaneous AFM and averaged tunnelling current images of the TiO2(101) anatase surface. (a) AFM topographic image representing the

general morphology of the surface over a (160� 160) nm2 area. Acquisition parameters (see Methods) are: fo¼ 170,999 Hz; Df¼ �6.5 Hz; A¼ 261.3 Å;

K¼ 33.4 N m� 1; CPD¼VBias¼ � 243 mV. (b,c) Simultaneous topographic AFM (Z(Df)) and averaged tunnelling current (oIt4) data showing a characteristic

atomic pattern that displays well-defined ovals along the rows of protrusions appearing in the Z(Df) image. Acquisition parameters are: fo¼ 153,031 Hz;

Df¼ �47.4 Hz; A¼ 107.1 Å; K¼ 23.9 N m� 1; CPD¼VBias¼ þ 800 mV. (d,e) Simultaneous Z(Df) and oIt4 images obtained with a different tip termination,

and corresponding to a less frequent atomic pattern characterized by featureless rows of protrusions in the Z(Df) image. Acquisition parameters are:

fo¼ 158,957 Hz; Df¼ �6.0 Hz; A¼ 143.2 Å; K¼ 26.8 N m� 1; CPD¼VBias¼ þ 510 mV. For both sets, image dimensions are (5� 3) nm2. The parallelogram

marks the same surface area in b,c and d,e, respectively. The crystallographic directions of the surface are indicated in a and d. All the experimental images in

this work display identical orientation with respect to these directions. (f) Ball-and-stick model of the TiO2(101) anatase surface, which terminates in rows of

twofold coordinated oxygen atoms (O2c), followed by a bilayer of threefold coordinated oxygen (O3c, second atomic layer) and fivefold coordinated titanium

(Ti5c, third atomic layer) atoms, and a deeper second bilayer of O3c and sixfold coordinated titanium (Ti6c) atoms.
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Figs 1–3). Apart from the inherent dependence on the tip–surface
separation and bias voltage, the latter points towards a marked
dependence of the oIt4 signal on the nature of the probe
termination. The comparison of simultaneous AFM and oIt4
images reveals that the bright features corresponding to high
current signal are mainly located in between the rows of
protrusions detected by AFM.

The atomic structure of the TiO2(101) anatase surface is
represented in Fig. 1f. Rows of twofold coordinated oxygen (O2c)
atoms form the topmost part of the surface. Below, there are two
oxygen-titanium bilayers in which the oxygen atoms are threefold
coordinated (O3c), and the titanium atoms are five (Ti5c) and
sixfold coordinated (Ti6c) at the shallower and deeper bilayers,
respectively. On this complex surface structure, there is not a
univocal way to match the positions of the different atomic
species to the maxima observed in the atomic resolution AFM
and oIt4 images shown in Fig. 1b–e.

Identification of atomic species. In early STM studies on anatase
surfaces, the assignment of the imaged atomic species was nor-
mally presumed following the assumption that at sample bias
voltages close to the conduction band, the Ti atoms should
contribute the most to the tunnelling current, by analogy with the
case of the TiO2(110) rutile surface32. However, the contribution
of the surface atoms to the topographic STM images is subject to
the current set point and the bias voltage17. In this work, to
experimentally verify the contribution of the surface atomic
species to our AFM and oIt4 images, we use individual water
molecules—intentionally deposited on the surface—as atomic
markers (Fig. 2). Previous theoretical works have shown that the
oxygen atom of a water molecule adsorbed on anatase (101)

strongly binds to one of the Ti5c atoms17. This bond produces a
redistribution of the local density of the states around the targeted
Ti5c atom that makes it vanish from an STM image17. The water
molecule additionally sustains two weak hydrogen bonds with O2c

atoms at the closest oxygen atomic row17. These bonding features
are clearly identified in our atomic resolution images.

Figure 2a,b displays simultaneous AFM and oIt4 images of
four individual water molecules adsorbed on the TiO2(101)
anatase surface. In the topographic AFM images, a water
molecule appears as a protrusion between two rows of ovals,
elevated 55±6 pm from them. All the molecules adsorb in the
same orientation that is denoted by the presence of a dip at one of
the nearby rows. The oIt4 channel shows a depletion of the
current signal at the same location the water molecule is imaged
by AFM. The details of the features ascribed to the adsorption
of a water molecule imaged with a more symmetric AFM
tip termination become apparent in Fig. 2c,d, which are a
magnification of the images labelled as � 400 mV in Fig. 2e.
Considering previous theoretical predictions17, it is possible to
superimpose a model of the five shallower atomic layers of the
TiO2(101) anatase structure to these images by assigning a Ti5c

site at the maximum topographic signal associated with the water
molecule, and by aligning the atomic rows of the model with the
rows of ovals in the AFM image. This procedure always results in
the O2c atoms lying on top of the protruding ovals detected by
AFM. A 180� rotation of the atomic model is excluded due to the
asymmetry imposed by energetically inequivalent surface steps14.
The comparison of the surface model with the features shown in
the atomic resolution images of Fig. 2c,d suggests that AFM is
sensitive to the topmost atomic layer of the surface, imaging the
O2c atoms as protrusions, while the main contribution to the
tunnelling current is related to the Ti5c atoms.
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Figure 2 | Individual water molecules as atomic markers. (a,b) Simultaneous topographic AFM (Z(Df)) and averaged tunnelling current (oIt4) images

showing four individual water molecules adsorbed on the TiO2(101) anatase surface. Image dimensions are (4.5�4.5) nm2. Simultaneous Z(Df) (c) and

oIt4 (d) signals ascribed to a single water molecule imaged with a different—more symmetric—tip termination. A top view of the outer atomic layers of

the TiO2(101) anatase surface has been superimposed to the images (see text for details). The squares mark the Ti5c atom at which the water molecule

binds to the surface17. The circles highlight the O2c atoms that sustain two weak hydrogen bonds with the water molecule17. (e) Sets of simultaneous Z(Df)

and oIt4 bias-dependent images obtained over the water molecule displayed in c and d with identical tip termination and approximately keeping the same

tip–surface separation (see Methods). The contrast of the filled state images (negative sample bias voltage) has been inverted (�oIt4) for a better

comparison with the empty state data. These images without the atomic model of the anatase (101) surface superimposed are displayed in Supplementary

Fig. 4. c and d are a magnification of the images labelled as �400 mV in e. Image dimensions are (2� 2) nm2. Acquisition parameters are: fo¼ 159,989 Hz,

Df¼ �6.6 Hz, A¼ 118.0 Å, K¼ 27.3 N m� 1, CPD¼VBias¼ þ400 mV, for a and b; and fo¼ 159,989 Hz, A¼ 113.2 Å, K¼ 27.3 N m� 1, CPD¼ � 180 mV for

c–e. The Df set point and the VBias value are listed under each set of images in e.
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This assignment of the different atomic species imaged by
AFM and oIt4 clarifies the features observed for the adsorption
of molecular water on the TiO2(101) anatase surface. The dip
between the atoms highlighted with circles in Fig. 2c is the
signature of the hydrogen bonds of the water molecule with
the two O2c atoms17. In the corresponding oIt4 image (Fig. 2d),
the Ti5c atom binding to the water molecule—highlighted by a
square—has no apparent contribution to the tunnelling current.
Instead, the signal appears redistributed in a region close to the
O2c atoms involved in the hydrogen bonds, the Ti5c atoms
interacting with these two O2c atoms and two additional lobes
near the O2c that binds to the highlighted Ti5c atom. Most of the
features observed in these oIt4 images are in good agreement
with simulated STM data based on our first-principles
calculations and with previous theoretical works17. Our
simulations confirm the experimental observations that Ti5c

surface sites present as STM maxima when imaging at positive
sample bias voltages. The connection between our oIt4 data
and conventional topographic STM images is discussed below.

Bias-dependent imaging. Dynamic AFM-STM not only provides
a clear identification of the atomic species responsible for the
image contrast but paves the way for atomic resolution imaging at
relatively small positive and negative bias voltages, in contrast
with previously reported STM measurements on anatase.
Figure 2e summarises a set of simultaneous AFM and oIt4 bias-
dependent images—keeping the tip–surface separation approxi-
mately constant (see Methods)—measured above the water
molecule displayed in Fig. 2c,d. These images were acquired with
identical probe termination over a bias voltage range from
� 820 mV to þ 950 mV, having a tip–surface contact potential
difference of � 180 mV. The AFM data present the same atomic
features regardless of the applied bias, showing an expected lower
contrast for higher bias voltages due to an increasing contribution
of the long-range electrostatic force. The oIt4 empty and filled
state images slightly differ, yet both indicate localization of den-
sity of states over the same surface region, as well as depletion of
charge from the Ti5c atom binding the water molecule. These
oIt4 images show a negligible variation of the local density of
states on the bias voltage range explored in the experiment. Even
a more striking fact is the collection of an apparent tunnelling

current within the band gap of the TiO2(101) anatase surface, that
has the onset of the conduction band located between þ 0.5 V
and þ 0.75 V as reported by scanning tunnelling spectroscopy
measurements33,34. In static STM topographic measurements
performed without cantilever oscillation (Supplementary Fig. 2),
stable empty state imaging was achieved by setting relatively high
bias voltages (typically between þ 0.8 V to þ 2 V depending on
the tip condition), while stable filled state imaging was almost
impossible even for biases as large as � 2 V. Although the
mechanism for the acquisition of current signal within the surface
band gap is not clear yet (it may be related to either the existence
of defect states within the band gap of our anatase natural single
crystals or band-bending effects35), these results show how, for
surface systems where the AFM and the tunnelling current signals
are spatially decoupled (see Supplementary Fig. 3), simultaneous
dynamic AFM-STM bears enormous potential to study surfaces
of wide band gap materials close to the Fermi level with atomic
resolution.

Discussion
The AFM imaging mechanism on the TiO2(101) anatase surface
can be further clarified with the aid of first-principles calculations.
Determining a suitable atomic arrangement that qualitatively
describes the forefront part of the probe is crucial for the correct
interpretation of AFM data36–41. To model the tip apex, we have
chosen small TiO2 clusters terminated by a hydroxyl group,
which were found to successfully describe weak tip–surface
interatomic forces on TiO2(110) rutile39 and could have been
easily formed during the probe conditioning prior to starting the
measurements (see Methods). Calculated tip–surface interatomic
forces obtained on approaching the probe model over relevant
atomic positions of the TiO2(101) anatase surface were compared
with the experimental counterparts. Both the magnitude of the
force minima and the overall shape of the curves were evaluated
for different relative orientations of the tip cluster model,
exposing blunt or sharp cluster edges towards the surface, while
maintaining the hydroxyl termination. Figure 3a summarises the
calculated tip–surface interatomic forces obtained with the sharp
probe orientation that best reproduces experimental data—
depicted in Fig. 3b—and displays the comparison with a typical
set of experimental short-range force curves.
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Figure 3 | AFM imaging contrast mechanism and common surface defects. (a) Calculated tip–surface interatomic forces over the relevant atomic

positions of the TiO2(101) anatase surface and comparison with experimental curves. The insets are simultaneous topographic AFM (Z(Df), upper panel)

and averaged tunnelling current (oIt4, lower panel) images of the surface area where the force spectroscopy experiments were performed. The black and

red stars mark the acquisition spots. Image dimensions are (1.5� 1.5) nm2. Acquisition parameters are: fo¼ 160,360 Hz, Df¼ � 5.0 Hz, A¼ 113.6 Å,

K¼ 27.5 N m� 1, CPD¼ � 80 mV, VBias¼ þ 500 mV. (b) Atomic model used in first-principle calculations, showing the hydroxyl group-terminated sharp

TiO2 cluster tip above the the TiO2(101) anatase surface slab. (c) Calculated force spectroscopy curves at the relevant sites of common TiO2(101) surface

point defects: a hydrogen defect and a subsurface oxygen vacancy (SSOV)—results for the clean surface sites are provided in dashed line for comparison.
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The analysis of the calculated forces corroborates the
experimental observations and confirms that, at the onset of the
tip–surface interatomic forces, AFM should image the water
molecule and the O2c atoms as protrusions. Atomic relaxations of
the tip model at the O2c site demonstrate that hydrogen bond
formation between the hydroxyl group at the AFM probe and the
surface oxygen atom dominates the interaction (Fig. 4a). In the
same tip–surface separation regime, such atomic relaxations were
also observed with tips probing the close-by Ti6c and Ti5c sites:
the hydroxyl group at the probe re-orients towards the nearest
O2c site and a hydrogen bond is formed (Fig. 4b). Such tip
relaxation effects explain the most common topographic AFM
images (Fig. 1b) that exhibit rows of protruding ovals slightly
elongated along the �101½ � crystallographic direction. Placing the
tip model into a lower height regime reveals a double minima
feature in the force curve over the Ti5c site. This feature is due to
the deflection of the tip hydrogen (H) atom at the first force
minimum that further allows the exposed oxygen of the hydroxyl
to engage in bonding with the sampled Ti5c atom at the second

minimum (Fig. 4b, d¼ 2 Å). Traces of double force minima at
Ti5c sites can also be observed experimentally for some probes, as
displayed in Fig. 3a. The O3c surface atoms are laterally
positioned furthest away from the O2c sites, so the force curves
computed over them are free of the hydrogen bond interaction
with the O2c atoms. The small forces predicted over the shallower
O3c atoms should make them almost undetectable by the AFM.
Force spectroscopy at most atomic sites of the clean anatase
surface—excluding the O3c atoms—results in the tip hydroxyl
group reorienting towards the nearest O2c site, which leads to
repeated sampling of the same chemical interaction and an
extended, oval-shape maxima in the experimental AFM images.

Identification of adsorbates on the anatase (101) surface using
STM manipulation techniques have been recently demon-
strated42. The combination of dynamic AFM-STM experiments
and quantum mechanical simulations supplies alternative means
for the identification of point defects on the anatase (101) surface.
Using first-principles calculations, we have analyzed the
structures of common defects expected at the anatase surface,
such as subsurface oxygen vacancies43 and hydroxyl groups, and
identified the key features they should exhibit in the experimental
images (Fig. 5).

Subsurface oxygen vacancy sites alter both the surface
geometry and the local electronic properties by inducing notable
structural deformations and a localized surface defect state. By
virtue of subsurface bond distortions, the O2c site above the
vacancy is lifted up by 28 pm while other surface atoms move
downwards. This topographic change results in a rigid upward
shift of the O2c force curve of B30 pm for spectroscopy calculated
on the O2c atom above a subsurface oxygen vacancy (see Fig. 3c).
One of the electrons left behind after the vacancy creation is
localized at the nearest Ti5c site next to the protruding O2c (see
square in Fig. 5f), that becomes a Ti3þ

5c . This reduction process
increases the reactivity with the probe and leads to an interaction
force over the Ti3þ

5c atom that resembles the one for the O2c

atoms away from the defect (Fig. 3c). Consequently, the presence
of a subsurface oxygen vacancy causes the adjacent O2c atom to
appear as a wide primary maximum in experimental AFM images
with features extended over the Ti3þ

5c atom nearby. At variance
with the on-top bright feature expected for the AFM channel, our
calculations predict a decrease of the STM signal at the Ti3þ

5c site
(Fig. 5f), which now hosts a band gap defect state that depletes the
density of states in the conduction band responsible for the bright
rows of STM maxima.

The defect shown in Fig. 5a,b features the above predicted
contrast, and so is a candidate for a subsurface oxygen vacancy
imaged with dynamic AFM-STM. The bright, wide feature in the
topographic AFM image (Fig. 5a) is located at a O2c site, and
protrudes B28 pm from other O2c atoms in defect-free regions of
the surface (Fig. 5e), in excellent agreement with the calculations.
This identification in the AFM image is further supported by the
associated oIt4 signal (Fig. 5b) measured at positive bias, which
shows the main feature predicted by the calculated STM image
(Fig. 3e): depletion of tunnelling current under the protrusion
seen in the AFM topography.

Combined information from dynamic AFM-STM experiments
also helps us identify a strong candidate for the subtle surface
hydroxyl defect (Fig. 5c,d). Our calculations show that a hydrogen
atom preferentially bonds to O2c sites, resulting in the host atom
moving 7 pm upwards. The surface hydroxyl interacts with the
hydroxyl group at the probe model to deflect the H atom at the
tip and to form a hydrogen bond with the exposed oxygen atom,
thus mirroring the probe–surface interaction behind the imaging
of the O2c sites at the clean surface. The modest structural change
and a similar interaction strength lead to a close correlation of
simulated force minima over a hydrogen defect and an O2c site, as

d=6Å d=4Å d=3Å d=2Å

Figure 4 | Atomic relaxations at the forefront of the tip model on

interaction with the surface. Computational snapshots illustrating the

evolution in optimal atomistic arrangement of tip and surface atoms as the

tip model is approached towards: (a) an O2c atomic site; (b) an Ti5c atomic

site, and (c) a hydroxyl defect site of the TiO2(101) anatase surface. Tip

height (d) labels below the images are directly related to the tip–surface

distance in computed force spectroscopy graphs shown in Fig. 3a,c. At

d¼ 3 Å, the relevant hydrogen bond interaction is highlighted with a dashed

line. At d¼ 2 Å, the images where the only system change is a small

downwards shift of surface atoms due to tip–surface repulsion are omitted.
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shown in Fig. 3c. Accordingly, hydrogen defects on the TiO2(101)
anatase surface should be almost indistinguishable from ordinary
O2c sites in AFM images collected with hydroxyl-terminated
probes at the onset of the tip–surface interatomic force. However,
computed STM images (Fig. 5g) suggest that this defect should be
detectable in the averaged tunnelling current channel at positive
bias, with the hydrogen marked by an extended triangular shape
maximum between Ti5c atomic rows.

These theoretical predictions match very well with the features
observed for a defect shown in the dynamic AFM-STM images
displayed in Fig. 5c,d. Along the line profile highlighted in Fig. 5c,
there is a defect on a O2c site protruding B11 pm with respect to
other O2c atoms located in less defective surface areas (see
Fig. 5e). This weak contrast in the AFM topography, although
compatible with the calculations, is clearly not enough for the
identification. However, the appearance of the oIt4 signal near

this defect resembles the STM image predicted from our first-
principles calculations for a surface hydroxyl group, with a bright
triangular-shape protrusion between Ti5c rows. These combined
features provide strong support to identify the defect highlighted
in Fig. 5c,d as a clear candidate for a surface hydroxyl group.

Notice that there are other surface defects visible in the oIt4
images displayed in Fig. 5, yet they are barely detected in the
AFM topography. Such defects may correspond to the presence of
interstitial atoms15 or hydrogen incorporated into the bulk44. We
have also observed variability of the oIt4 background contrast
over some surface areas—likely to be traces of metallic impurities
generating delocalized charge states15,33—that seem to be absent
on the AFM images (see also Supplementary Figs 2 and 3).

We now consider the relation between the oIt4 and the
topographic STM images of the anatase (101) surface. A direct
comparison between these two types of images is in principle
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difficult due to the different acquisition scheme31. However, we
provide theoretical evidence that makes our oIt4 measurements
and previous STM observations compatible13–20,33–34,42 under a
common framework. Figure 6a shows simulated STM images of
the clean surface computed with one of the large positive bias
voltages used in our experiments (þ 0.8 V). These calculated

images correspond to different isosurfaces of the local density of
states of the anatase (101) surface integrated in a 0.8 eV energy
window from the conduction band minimum. Larger isosurface
values correspond to larger current set points, and thus, to
scanning closer to the surface. The images reveal that when
scanning with STM at distances far from the surface, the current
maxima are essentially spherical and centered around the Ti5c

atoms, but when scanning at higher set points, the current
maxima widen out due to an increasing contribution from the O2c

atoms. The contribution of the different atomic species to the
STM tunnelling current is available from the corresponding line
profiles (green line in the images), which are compared in Fig. 6b.
The simulated topography corrugation depends strongly on the
tip–surface distance. The result closest to our experiments
(isosurface of 10� 7 e bohr� 3) is associated with a STM
imaging mode dominated by the Ti5c atoms. The latter
corresponds to oIt4 images acquired typically between 4 to
5 Å above the surface, with deconvoluted tunnelling current
values31 of a few tenths of a nanoampere (see Supplementary Fig.
1). Previous conventional STM measurements and theoretical
results45 indicate a significant contribution of the O2c atoms to
the images, which we also obtain for simulated STM images close
to the surface. Those theoretical STM images45 were calculated at
a close distance (2.5 Å) above the surface but with a bias of 1.5 eV,
imitating the experimental bias voltages used in conventional
STM imaging of this surface. The larger bias voltage also
enhances the role of the O2c atoms, as it is shown in the projected
density of states of the surface atoms (see Supplemental Fig. 5) in
which the O2c contribution is negligible near the minimum of the
conduction band but increases for energies above þ 0.6 eV. This
small contribution of the O2c atoms to the local density of states
at the bias voltages used in our experiments enhances the
contribution of the Ti5c atoms to our oIt4 images even when
scanning relatively close to the surface.

In summary, our results demonstrate the benefits of combined
AFM and averaged tunnelling current imaging for the study of
oxide surfaces at the atomic scale, and specially for the
characterization of defects and adsorbates that play a crucial role
in the catalytic and energy-harvesting applications of these
materials. We have applied these techniques for the discrimina-
tion and simultaneous imaging of different atomic species—with
O2c (Ti5c) dominating the AFM (averaged tunnelling current)
channel—at the TiO2(101) anatase surface and showed tunnelling
current acquisition within the surface band gap, where standard
STM imaging is challenging. First-principles simulations provide
an explanation for the small tip-surface interactions in terms of
an hydroxyl-terminated tip and reveal the role of dynamic tip
relaxation effects in contrast formation during AFM imaging.
Assisted by key differentiating traits extracted from our first-
principles AFM and STM calculations, we have identified
candidates for the most common surface defects, such as
subsurface oxygen vacancies and surface hydroxyls. Our STM
calculations also shed light on the role of the tip–surface
separation and the bias voltage on the tunnelling current detected
over the anatase (101) surface, explaining the contrast observed in
the averaged tunnelling current images with respect to conven-
tional topographic STM images previously reported. The findings
reported here provide the foundation for future work on anatase,
including the thorough characterization of a large amount of
purposefully created defects. More importantly, they pave the way
for the study of more complex anatase systems related to water
splitting and organic photovoltaics (solar energy conversion),
including the adsorption geometries and binding sites of organic
dyes and other photoactive molecules like pentacene and
buckminsterfullerene, as well as metal dopants to enhance
hydrogen production.
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in our experiments (+0.8 eV). These images correspond to different
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8265 ARTICLE

NATURE COMMUNICATIONS | 6:7265 | DOI: 10.1038/ncomms8265 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Methods
Scanning probe microscopy measurements. A UNISOKU Ltd ultrahigh vacuum
(UHV) cryogenic dynamic AFM with a home-built optical interferometer for the
detection of the cantilever dynamics and a commercial scanning probe microscopy
(SPM) controller (Nanonis SPM Control System, SPECS, Germany) was used for
the experiments and the in situ sample preparation. Measurements were accom-
plished at a 77 K tip-sample temperature using frequency modulation detection46.
Platinum–iridium-coated silicon cantilevers (PPP-NCLPt-20, Nanosensors,
Switzerland) were instantaneously excited to their first mechanical resonant
frequency keeping the oscillation amplitude constant. The tunnelling current
flowing between probe and surface averaged over multiple cantilever oscillation
cycles (oIt4)31 was simultaneously detected during topographic AFM imaging
(see also the discussion in Supplementary Fig. 3). The shift of the first mechanical
resonant frequency (Df) from the free-oscillation value on forces acting on the
cantilever probe was used to regulate the tip–surface separation.

The abbreviations for the experimental parameters are as follows: fo is the free-
oscillation fundamental resonant frequency of the cantilever; Df is the frequency
shift set point for AFM topographic imaging; A is the cantilever oscillation
amplitude; K is the cantilever stiffness; CPD is the tip–surface contact potential
difference measured a few nanometers above the surface plane; VBias is the bias
voltage applied to the sample.

Force spectroscopy47 was carried out by recording both Df and oIt4 as a
function of the tip-sample relative vertical displacement (Z). The determination of
the corresponding K and A values are described elsewhere48. The absence of any tip
or surface modification during the spectroscopic acquisition was carefully
checked48. In standard AFM imaging and force spectroscopic measurements, the
long-range electrostatic interaction was minimized by compensating the CPD. For
the characterization of the oIt4 signal a small VBias was applied during both
imaging and force spectroscopy acquisition. The total tip–surface interaction force
was obtained from Df(Z) curves by applying an inversion procedure49, and the
oIt4 signal was related to the expected static STM values (Supplementary Fig. 1)
by implementing the corresponding conversion method31. Topographic effects on
Z due to the spectroscopic acquisition were compensated50, assuring a common
origin for curves measured at different locations with respect to the surface plane.
The tip–surface interatomic forces were obtained by subtracting an appropriate
fit47,48 over the long-range interaction region to the total force. For the comparison
of the experimental and theoretical forces in Fig. 3, the experimental curves were
shifted—keeping constant their relative separation—a distance that aligns the
position of the minimum for the O2c curve with the theoretical counterpart.

Bias-dependent imaging was carried out by opening the feedback loop for the
short time required to change the bias voltage and update the Df topographic set
point to the value read after applying the new bias potential. This Df set point
accounts for the additional electrostatic force with respect to the CPD compensated
case. This method prevents a slight tip retraction from the surface on increasing the
electrostatic force, approximately keeping the same tip–surface separation for
images acquired at different bias voltages.

Prior to the measurements, the cantilever tip was conditioned for simultaneous
AFM and averaged tunnelling current acquisition by performing current-bias
spectroscopy in static STM mode while approaching the tip towards the surface
several ångströms. This procedure often results in the tip picking up surface
material—holes of a few nanometers diameter were normally detected at the
surface after the tip conditioning—in an environment where most of the UHV
residual gas consists of hydrogen molecules.

Sample preparation. Natural single crystals of anatase cut exhibiting a polished
(101) surface were purchased from Surface Net GmbH (www.surfacenet.de). The
surface preparation was made by successive cycles of 20 min. Arþ ion sputtering
(1 keV energy and 5 mA ion current measured at the sample) and annealing at
970 K during 30 min in UHV (B1.2� 10� 8 Pa). The anatase natural crystals used
in this work have a variety of impurities that may differ in concentration and
nature from one crystal to another. With our sample mounting and surface pre-
paration protocol, we have not observed the formation of surface structures
assigned to segregation of impurities51. Water dosage was carried out by exposing a
clean anatase surface to 0.8 Langmuir of water vapour while keeping the sample
cold. Ultra-clean Milli-Q water—further purified by several freeze–pump–thaw
cycles—was introduced into the UHV system as vapour via a leak valve.

First-principles calculations. Calculations based on density functional theory
were performed using the VASP code52, with PAW pseudopotentials and a plane
wave basis set with a cutoff of 500 eV. The PBE exchange-correlation functional53

was supplemented by onsite U¼ 4 eV terms on Ti atoms to describe better the
electronic structure of the TiO2(101) anatase surface and the electron localization
on Tiþ4 sites associated with the creation of its most common point defects. This U
value is compatible with recent theoretical results33. The surface was modelled as a
10.57� 11.56 Å periodic slab of four TiO2 trilayers, with the bottom two layers
fixed into a bulk-like configuration. Optimized structures were obtained with G
point sampling of the Brillouin zone. Further surface electronic structure
properties, including Tersoff–Hamann STM images54, were extracted from static
calculations featuring a 4� 4 Monkhorst–Pack k-point mesh.

The tip–surface interaction energy and force were determined in a stepwise,
quasistatic manner by lowering the tip model towards the surface in steps of 25 pm
from the original height of 6 Å. At each step, the atoms in the top two slab trilayers
and the bottom of the tip model were allowed to relax into their ground state
configuration with convergence criteria for the total energy and forces of 10� 6 eV
and 0.01 eV Å� 1. Smooth force curves were obtained by fitting a Morse potential
function modified by a polynomial to the theoretical force data points.
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