164 research outputs found

    Metal-Insulator Transitions in Degenerate Hubbard Models and Ax_xC60_{60}

    Get PDF
    Mott-Hubbard metal-insulator transitions in NN-fold degenerate Hubbard models are studied within the Gutzwiller approximation. For any rational filling with xx (integer) electrons per site it is found that metal-insulator transition occurs at a critical correlation energy Uc(N,x)=Uc(N,2Nx)=γ(N,x)ϵˉ(N,x)U_c(N,x)=U_c(N,2N-x)=\gamma(N,x)|\bar{\epsilon}(N,x)|, where ϵˉ\bar{\epsilon} is the band energy per particle for the uncorrelated Fermi-liquid state and γ(N,x)\gamma(N,x) is a geometric factor which increases linearly with xx. We propose that the alkali metal doped fullerides AxC60A_xC_{60} can be described by a 3-fold degenerate Hubbard model. Using the current estimate of band width and correlation energy this implies that most of AxC60{\rm A_xC_{60}}, at integer xx, are Mott-Hubbard insulators and A3C60{\rm A_3C_{60}} is a strongly correlated metal.Comment: 10 pages, Revte

    Behavioral characteristics as potential biomarkers of the development and phenotype of epilepsy in a rat model of temporal lobe epilepsy

    Get PDF
    The present study performed a detailed analysis of behavior in a rat model of epilepsy using both established and novel methodologies to identify behavioral impairments that may differentiate between animals with a short versus long latency to spontaneous seizures and animals with a low versus high number of seizures. Temporal lobe epilepsy was induced by electrical stimulation of the amygdala. Rats were stimulated for 25 min with 100-ms trains of 1-ms biphasic square-wave pluses that were delivered every 0.5 s. Electroencephalographic recordings were performed to classify rats into groups with a short latency ( 20 days, n = 8) to the first spontaneous seizure and into groups with a low number of seizures (62 ± 64.5, n = 8) and high number of seizures (456 ± 185, n = 7). To examine behavioral impairments, we applied the following behavioral tests during early and late stages of epilepsy: behavioral hyperexcitability, open field, novel object exploration, elevated plus maze, and Morris water maze. No differences in stress levels (e.g., touch response in the behavioral hyperexcitability test), activity (e.g., number of entries into the open arms of the elevated plus maze), or learning (e.g., latency to find the platform in the Morris water maze test during training days) were observed between animals with a short versus long latency to develop spontaneous seizures or between animals with a low versus high number of seizures. However, we found a higher motor activity measured by higher number of entries into the closed arms of the elevated plus maze at week 26 post-stimulation in animals with a high number of seizures compared with animals with a low number of seizures. The analysis of the Morris water maze data categorized the strategies that the animals used to locate the platform showing that the intensity of epilepsy and duration of epileptogenesis influenced swimming strategies. These findings indicate that behavioral impairments were relatively mild in the present model, but some learning strategies may be useful biomarkers in preclinical studies

    Association between celiac sprue and cryopyrin associated autoinflammatory disorders: a case report

    Get PDF
    Cryopyrin-associated diseases may be characterized by rashes, fever, and sensorineural deafness, while celiac disease may present with symptoms of malabsorption and fatigue. Arthritis is seen in both conditions. We report a young child with histologically diagnosed celiac disease and a cryopyrinopathy

    Structure and properties of a novel fulleride Sm6C60

    Full text link
    A novel fulleride Sm6C60 has been synthesized using high temperature solid state reaction. The Rietveld refinement on high resolution synchrotron X-ray powder diffraction data shows that Sm6C60 is isostructural with body-centered cubic A6C60 (A=K, Ba). Raman spectrum of Sm6C60 is similar to that of Ba6C60, and the frequencies of two Ag modes in Sm6C60 are nearly the same as that of Ba6C60, suggesting that Sm is divalent and hybridization between C60 molecules and the Sm atom could exist in Sm6C60. Resistivity measurement shows a weak T-linear behavior above 180 K, the transport at low temperature is mainly dominated by granular-metal theory.Comment: 9 pages, 3 figures, submitted to Phys. Rev. B (March 12, 1999

    Evidence for phase formation in potassium intercalated 1,2;8,9-dibenzopentacene

    Full text link
    We have prepared potassium intercalated 1,2;8,9-dibenzopentacene films under vacuum conditions. The evolution of the electronic excitation spectra upon potassium addition as measured using electron energy-loss spectroscopy clearly indicate the formation of particular doped phases with compositions Kx_xdibenzopentacene (xx = 1,2,3). Moreover, the stability of these phases as a function of temperature has been explored. Finally, the electronic excitation spectra also give insight into the electronic ground state of the potassium doped 1,2;8,9-dibenzopentacene films.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1201.200

    Expanding the set of rhodococcal Baeyer–Villiger monooxygenases by high-throughput cloning, expression and substrate screening

    Get PDF
    To expand the available set of Baeyer–Villiger monooxygenases (BVMOs), we have created expression constructs for producing 22 Type I BVMOs that are present in the genome of Rhodococcus jostii RHA1. Each BVMO has been probed with a large panel of potential substrates. Except for testing their substrate acceptance, also the enantioselectivity of some selected BVMOs was studied. The results provide insight into the biocatalytic potential of this collection of BVMOs and expand the biocatalytic repertoire known for BVMOs. This study also sheds light on the catalytic capacity of this large set of BVMOs that is present in this specific actinomycete. Furthermore, a comparative sequence analysis revealed a new BVMO-typifying sequence motif. This motif represents a useful tool for effective future genome mining efforts.

    Functional inhibition related to structure of a highly potent insulin-specific CD8 T cell clone using altered peptide ligands

    Get PDF
    Insulin-reactive CD8 T cells are amongst the earliest islet-infiltrating CD8 T cells in NOD mice. Cloned insulin B15–23-reactive cells (designated G9C8), restricted by H-2Kd, are highly diabetogenic. We used altered peptide ligands (APL) substituted at TCR contact sites, positions (p)6 and 8, to investigate G9C8 T cell function and correlated this with structure. Cytotoxicity and IFN-γ production assays revealed that p6G and p8R could not be replaced by any naturally occurring amino acid without abrogating recognition and functional response by the G9C8 clone. When tested for antagonist activity with APL differing from the native peptide at either of these positions, the peptide variants, G6H and R8L showed the capacity to reduce the agonist response to the native peptide. The antagonist activity in cytotoxicity and IFN-γ production assays can be correlated with conformational changes induced by different structures of the MHC-peptide complexes, shown by molecular modeling. We conclude that p6 and p8 of the insulin B15–23 peptide are very important for TCR stimulation of this clone and no substitutions are tolerated at these positions in the peptide. This is important in considering the therapeutic use of peptides as APL that encompass both CD4 and CD8 epitopes of insulin

    HSPVdb—the Human Short Peptide Variation Database for improved mass spectrometry-based detection of polymorphic HLA-ligands

    Get PDF
    T cell epitopes derived from polymorphic proteins or from proteins encoded by alternative reading frames (ARFs) play an important role in (tumor) immunology. Identification of these peptides is successfully performed with mass spectrometry. In a mass spectrometry-based approach, the recorded tandem mass spectra are matched against hypothetical spectra generated from known protein sequence databases. Commonly used protein databases contain a minimal level of redundancy, and thus, are not suitable data sources for searching polymorphic T cell epitopes, either in normal or ARFs. At the same time, however, these databases contain much non-polymorphic sequence information, thereby complicating the matching of recorded and theoretical spectra, and increasing the potential for finding false positives. Therefore, we created a database with peptides from ARFs and peptide variation arising from single nucleotide polymorphisms (SNPs). It is based on the human mRNA sequences from the well-annotated reference sequence (RefSeq) database and associated variation information derived from the Single Nucleotide Polymorphism Database (dbSNP). In this process, we removed all non-polymorphic information. Investigation of the frequency of SNPs in the dbSNP revealed that many SNPs are non-polymorphic “SNPs”. Therefore, we removed those from our dedicated database, and this resulted in a comprehensive high quality database, which we coined the Human Short Peptide Variation Database (HSPVdb). The value of our HSPVdb is shown by identification of the majority of published polymorphic SNP- and/or ARF-derived epitopes from a mass spectrometry-based proteomics workflow, and by a large variety of polymorphic peptides identified as potential T cell epitopes in the HLA-ligandome presented by the Epstein–Barr virus cells
    corecore