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Abstract

Mott-Hubbard metal-insulator transitions in N -fold degenerate Hubbard

models are studied within the Gutzwiller approximation. For any rational

filling with x (integer) electrons per site it is found that metal-insulator tran-

sition occurs at a critical correlation energy Uc(N,x) = Uc(N, 2N − x) =

γ(N,x)|ǭ(N,x)|, where ǭ is the band energy per particle for the uncorrelated

Fermi-liquid state and γ(N,x) is a geometric factor which increases linearly

with x. We propose that the alkali metal doped fullerides AxC60 can be de-

scribed by a 3-fold degenerate Hubbard model. Using the current estimate of

band width and correlation energy this implies that most of AxC60, at integer

x, are Mott-Hubbard insulators and A3C60 is a strongly correlated metal.
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The discovery of superconductivity in A3C60 [1] has spurred great interest in alkali metal

doped fullerides [2]. Beside A3C60, stable phases such as Rb1C60, Na2C60, K4C60 were

synthesized [2,3]. One unusual property is that except A3C60 all integer x phases are found

to behave like insulators [4]. This contradicts the band structure calculations which imply

that all of them are metals due to the 3-fold degeneracy of the t1u molecular orbitals which

forming the conduction bands [5]. In this letter we show that the strong (compared with

the band width) intramolecular electron-electron correlation is responsible for this unusual

property. The results we have obtained also shed light on the instability of the non-integer

x phases [6].

The existence of strong correlation in pure C60 is supported by spectroscopy experiments.

Photoemission shows an insulating gap of 2.6eV, while the photo-conductivity and absorp-

tion indicate excitation at 1.6eV. This discrepancy is interpreted as due to strong correlation

which results in a large excitonic binding energy. The estimated correlation energy U ∼ 1eV

[4,7,8] is much larger than the conduction band width W ∼ 0.2− 0.4eV [5,10]. Thus, it has

been suggested that that A3C60 is a Mott-Hubbard insulator and the superconducting phase

is non stoichiometric [7]. However, structural, transport and spectroscopic measurements

show that the superconducting phase is stoichiometric and there is no evidence of insulating

behavior in A3C60. Even more interesting is that for x 6= 3 integer stoichiometric phases

no metallic behavior have been observed so far. Therefore neither a simple Hubbard model

which prefers insulating at half filling (x = 3), nor the simple band filling model which

predict metallic behavior for all phases, can explain the unusual metal-insulator transitions

observed.

Clearly the 3-fold degeneracy of the conduction band can not be neglected. This leads us

to study the general N -fold degenerate Hubbard model at rational fillings. We find that the

unusual metal-insulator transitions observed can be understood in term of Mott-Hubbard

transition in the degenerate Hubbard model. It is found that for a general N -fold degenerate

Hubbard model at rational filling x/2N , where the average number of electrons per site (x)

is an integer, the metal-insulator transition occurs at a critical Uc which increases with both
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x and N . Uc is found to be the largest at half filling x = N for a given degeneracy N (except

N = 2). Therefore it is possible that the system is a metal at half filling while insulating

away from it. Our results lay a solid theoretical foundation for the interpretation that AxC60

are either Mott-Hubbard insulators or strongly correlated metals and provide a rationale to

understand the unusual metal-insulator transitions in this family of materials and molecular

metals in general.

Consider the general N -fold degenerate Hubbard model with the correlation energy U

independent of orbitals and spins

H =
∑

i,j,α,β

tα,βi,j c
+
j,βci,α +

U

2

∑

i,α6=β

ni,αni,β , (1)

where α = (r, σ) include both spin (σ) and orbital (r) indices; ni,α = c+i,αci,α are number

operators. Let L be the size of the lattice and M be the total number of electrons. By

rational filling we mean that the average number of electrons per site x = M/L is an

integer. For such a filling there exists a well defined insulating state where there are exactly

x electrons localized at each site. Obviously for a sufficiently large U hopping is forbidden,

and the the ground state is insulating. As U decreases a metal-insulator transition, at a

certain critical Uc, is expected. For the case of the non-degenerate Hubbard model the

only rational filling is the half filling (N = x = 1); in this case it is well known that the

ground state at large U is an ordered magnetic insulator [9]. For the degenerate Hubbard

model, in general, the insulating state could also be ordered. However, we will consider the

paramagnetic (or disordered) insulating state only because our primary interest is AxC60,

where the lattice is non bi-partile and large amount of intrinsic disorders are known to exist

[10,11].

In the insulating state,the kinetic energy is zero and the total energy per site E0 is given

by the correlation energy PE = U
2
x(x − 1). Imagining a situation very close to the metal-

insulation transition such that only one site has x+1 electrons, the correlation costs U while

the kinetic energy gained for the excitation is of the order W . Since there are x electrons

per site, there are x possible ways of making such an excitation. Therefore one might expect
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Uc(x) ∼ xW [12].

In the case of the non-degenerate Hubbard model at half filling the rigorous result Uc =

8|ǭ| = 2W was obtained by Brinkman and Rice [13] within the Gutzwiller approximation

[14]. The central point of Gutzwiller approximation is to associate a projection factor η with

every doubly occupied site, assuming that the many-body wavefunction can be written as

a superposition of states with different numbers of doubly occupied sites ν. The optimal ν

is determined variationally by calculating the expectation value of the Hamiltonian. In the

thermodynamic limit the summation over ν is dominated by the optimal ν term, then the

kinetic and potential energies can be calculated by counting the number of configurations

which contribute.

We have carried out similar calculations rigorously for the general N -fold degenerate

Hubbard model in a limit close to the metal-insulator transition. The details of counting

are rather tedious and will be published elsewhere [15]. Here we will simply state assumptions

and results and discuss their implications for AxC60.

Let x be the average number of electrons per site and L be the total number of sites.

We assume that there is complete permutation symmetry between all orbitals and spins,

so the number of electrons occupying each α = (r, σ) state is m = xL
2N

. Near the metal-

insulator transition the probability that a site is occupied by more than x + 1 electrons

is very small as it costs 2U or more energy. Thus we assume that each site can only be

“empty” (x − 1 electrons), “singly-occupied” (x electrons) or “doubly-occupied” (x + 1

electrons). Let 2Nν ≪ L be the total number of doubly occupied sites, then by symmetry

the number of empty sites is also 2Nν. Every doubly occupied site costs a correlation

energy U with respect to the insulator state where there are exactly x electrons on every

site. The Gutzwiller wavefunction is constructed from the uncorrelated Slater determinant

|SL >= |{k1, α1, ...., kn, αn} > by projecting out doubly occupied states with a weighting

factor η

|φ >=
∏

i,α,β

(1− ηc+i,αc
+
i,β)|SL > . (2)
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This wave function is a linear combination of a large number of states with different ν.

Following the original calculation of Gutzwiller, the expectation value of the Hamiltonian

is dominated by the state with the optimal ν which is to be determined variationally. Af-

ter a lengthy derivation the average energy per particle with respect to the paramagnetic

insulating state is found to be [15]

E(N, x) = Q(N, x, ν,m)ǭ(x) +
ν

m
U , (3)

where ǭ(x) is the kinetic (band) energy per particle in the uncorrelated state with the center

of the band chosen to be zero, ǭ(x = 2N) = 0. The quotient Q, which reflects the reduction

of the hopping term in the correlated state [14,15], is given by

Q(N, x) =
αN,xν(m− 2xν)

m2

(

1 + η
(m− 2xν)

αN,xν

)2

, (4)

where

αN,x =















2Nx
2N−1

if x = 1 or 2N − 1

x if 2 ≤ x ≤ 2N − 2 ,
(5)

and the projection parameter η is

η =















2xν
m−2xν

√

N
2N−1

if x = 1 or 2N − 1

xν
m−2xν

if 2 ≤ x ≤ 2N − 2 .
(6)

Substituting eqs.4-6 into Eq. (3) and minimizing the energy with respect to ν̄ = ν/m leads

to

ν̄ =
1

4x
(1−

U

Uc

) (7)

and the energy per particle

E0 =
γ(N, x)ǭ

8x
(1−

U

Uc

)2 , (8)

where U is given by

Uc(N, x) = γ(N, x)|ǭ(N, x)| =















2Nx
2N−1

(

1 +
√

2N−1
N

)2
|ǭ(N, x)| if x = 1 or 2N − 1

4x|ǭ(N, x)| if 2 ≤ x ≤ 2N − 2 .
(9)
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As U increases toward Uc, the number of doubly occupied states approach zero. Thus the

Mott-Hubbard transition occurs at Uc.

Eq.9 is the main result of this paper. Several points are worth mentioning. a) The

particle-hole symmetry is preserved if |ǭ(N, x)| = x
2N−x

|ǭ(N, 2N − x)|; this is expected be-

cause the starting Hamiltonian Eq. (1) contains particle-hole symmetry. b) For N = 1 the

only rational filling is half filling x=1, the Brinkman-Rice result Uc = 8|ǭ| is recovered. c)

Regardless of the band structure, Uc generally increases with x reaching the maximum at

half filling x = N (N = 2 is an exception); thus, for a degenerate Hubbard system it is more

difficult for it to become a Mott insulator. d) The above results apply only to integer x. For

non-integer x, if U is larger than Uc, there will be tendency for the system to phase separate

into integer phases to lower the total energy. This may explain the experimental observation

that non-integer x phases1 are not stable AxC60 where the alkali ions can segregate together

with electrons which screen out the long range Coulomb repulsion. Details of this issue will

be explored elsewhere.

To make a quantitative estimate, one needs to know the band structure. In the case

of a flat band with the bandwidth W , ǭ(N, x) = x−2N
4N

W . One obtains the simple result

Uc(N, x) = x(2N−x)
N

W (x 6= 1, 2N − 1). This agrees qualitatively with the simple argument

discussed earlier. Fig.1 shows plots of Uc/W vs x/2N for several N values.

Now let us turn to the specific application of the above results to the metal-insulator

transitions in AxC60. It is known that each alkali metal donates one electron and that the

conduction band is formed by overlap of the 3-fold degenerate t1u molecular orbitals. For

x = 1, 3, 4 structures are known to be rhombohedral, face-center-cubic and body-center-

tetragonal, respectively [3]. For all these structures LDA ab initio calculations suggest that

all of them are metals [5]. Experimentally, except x = 3, all phases with integer x are

found to be insulating. It has also been shown that the band structure can be accurately

represented by a 3-band tight-binding model, in particular the density of states was shown

to be approximately flat due to the intrinsic orientational disorder [10]. The band width W

determined from both experiments [16] and calculations [5,10] is very small, W ∼ 0.2−0.4eV .
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On the other hand, spectroscopic studies [4,7] and theoretical calculations [8] suggest that

the intramolecular electron correlation energy is around U ∼ 1eV . The value of U is expected

to remain unchanged with doping because the screening is provided by the large number

of molecular orbitals above t1u, which is not affected by the doping. From Eq. (9) and

assuming a flat band one obtains Uc(x,N = 3)/W = 2.6, 2.67, 3 respectively for x = 1, 2, 3.

Thus if the parameters are such that 2.67W < U < 3W , which is where the current best

estimate of W and U fall, then the whole family of AxC60 for x = 1, 2, 4, 5 are Mott-Hubbard

insulators while x = 3 could be a strongly correlated metal. Of course we caution that the Uc

calculated here only represents the lower bound; however, we expect the qualitative results

Uc(N, x) ≤ Uc(N,N), Uc(N,N) ∼ NW will hold for the exact Uc.

In conclusion we have studied Mott-Hubbard transitions in the N -fold degenerate Hub-

bard model within the Gutzwiller approximation. It is shown that for any integer number

of electrons per site there exists a critical correlation energy Uc above which the system is a

Mott-Hubbard insulator. Uc is found to be sensitive to both the degeneracy and filling. We

propose that the family of materials AxC60 can be described by a 3-fold degenerate Hubbard

model. With reasonable estimates for the band width and the intramolecular correlation

energy, we show that it is possible that for most integer phases ( x = 1, 2, 4, 5) the materials

are Mott-Hubbard insulators and A3C60 is likely a strongly correlated metal despite the fact

that U is several times of the band width.
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FIGURES

FIG. 1. Phase diagrams for Mott-Hubbard metal-insulator transitions in N -fold degenerate

Hubbard models. Shown are results for N = 2, 3, 4, 5. For U > Uc(N,x) the system is a

Mott-Hubbard insulator. Note that only the points, corresponding to integer (x) number of elec-

trons per site, are meaningful.
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