
Emerging roles of ATF2 and the dynamic AP1 network in cancer

Pablo Lopez-Bergami,
Instituto de Biologia y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires1428,
Argentina, pablo.bergami@gmail.com

Eric Lau, and
Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA,
elau@burnham.org

Ze'ev Ronai
Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA

Abstract
Cooperation among transcription factors is central for their ability to execute specific transcriptional
programmes. The AP1 complex exemplifies a network of transcription factors that function in unison
under normal circumstances and during the course of tumour development and progression. This
Perspective summarizes our current understanding of the changes in members of the AP1 complex
and the role of ATF2 as part of this complex in tumorigenesis.

Activator protein 1 (AP1)1,2 functions in almost all areas of eukaryotic cellular behaviour,
from cell cycle proliferation and development to stress response and apoptosis. Indeed, AP1
is activated in response to a plethora of extracellular signals from cytokines and growth factors
to stress and inflammation3,4. The expansive transcriptional repertoire executed by AP1
complexes is propagated from the diverse compositional array of homodimeric or
heterodimeric combinations formed by members of the Jun, Atf, Fos and Maf transcription
factor families (BOX 1). The dimeric combinations and transcriptional activity observed in
vivo are largely influenced by the tissue-specific expression patterns of the individual proteins,
and importantly by their specific activating mechanisms and post-translational modifications
that facilitate their individual ability to dimerize with other basic leucine zipper (bZIP) domain
proteins. This inherently diverse composition of AP1 complexes and their central role in
transcriptional regulation places AP1 complexes at a functional epicenter for pathological
signal relay in disease, particularly in the context of malignant cellular transformation in which
AP1 proteins are often deregulated by oncoprotein signalling4–6. This Perspective describes
the function and cooperation of Jun, Fos and Atf family members in tumour cells, and the
emerging function of ATF2 as part of the dynamic AP1 complex.
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Box 1

The Ap1 transcription factor complex

The mammalian AP1 proteins are homodimers and heterodimers composed of proteins from
the Jun (JUN, JUNB and JUND) and Fos (FOS, FOSB, FRA1 and FRA2) families, and the
closely related activating transcription factor (Atf and Creb) subfamily and the Maf
subfamily5. AP1 constituent proteins are structurally distinguished by a basic leucine zipper
(bZIP) domain that is composed of leucine zipper and basic domains. It is through these
domains that AP1 proteins dimerize and bind to DNA. These proteins are typically activated
through phosphorylation by the indicated upstream kinases. The different AP1 dimers bind
to DNA with varying affinities and differ in their transactivation efficiencies8,15. Jun
proteins can form stable dimers that bind to the AP1 DNA recognition element 5′-TGAC/
GTCA-3′ (also known as TPA response element (TRE)) based on their ability to mediate
transcriptional induction in response to the phorbol ester tumour promoter TPA2,15. Atf
proteins, conversely, form dimers that preferentially bind to cyclic AMP responsive
elements (CRE; 5′-TGACGTCA-3′)15. AP1 proteins also dimerize efficiently with other
transcription factors, including some that are not members of the bZIP family193.

JUN and the Jun family
JUN was originally identified as the normal cellular counterpart of the avian sarcoma (ASV17)
viral Jun oncoprotein (v-jun)7. The Jun family consists of JUN, JUNB and JUND, and each
protein has distinct characteristics. JUN is important for cell proliferation, survival and
apoptosis, and accordingly mice lacking JUN die between day 12.5 and 13.5 of embryonal
development owing to hepatic failure and heart defects8,9. Similarly, JUNB is essential for
embryonal development, however, JUND is dispensable10. Although the JUN locus is not
mutated in human cancer, it was recently shown to be a target of 1p32 amplifications in
undifferentiated and aggressive human sarcomas11,12. Moreover, many human cancers exhibit
overexpression of JUN and/or other Jun family members (TABLE 1), which in most cases, is
the result of upstream oncogene activation13. There is now good evidence that JUN activation
is a crucial contributing factor for transformation and tumorigenesis, rather than an indirect
effect of oncogenesis.

JUN activation
JUN is an ‘immediate early gene’ and is responsive to mitogenic stimuli, as well as DNA
damage and stress. JUN expression levels are tightly controlled by a combination of protein
stability and a short mRNA half-life of 20–25 minutes, owing to an AU-rich RNA destabilizing
element in the 3′-untranslated region. Post-translational modifications trigger a positive
autoregulatory loop that involves the binding of AP1 dimers to a phorbol TPA response element
(TRE; also known as a JUN1 site) and a cyclic AMP responsive element CRE (also known as
a JUN2 site) in the JUN promoter resulting in increased transcription14. The AP1 dimers
primarily involved in JUN transcription are JUN– FOS and JUN–ATF2 for TRE and CRE,
respectively15. JUN transcription is also induced by SP1, nuclear factor-κB (NF-κB), ternary
complex factors (TCFs), MEF2 or CCAAT-binding transcription factors16,17. ERK contributes
to JUN transcription by activating FOS, TCFs and MEF217. The signals that trigger JUN
transcription also activate RNA-binding proteins that increase JUN mRNA stability. In all
cases, JUN exhibits a rapid, but transient upregulation, which effectively stimulates the
transcription of genes important for entry into the G1 and S phases of the cell cycle such as
cyclin D1 (REF. 11), cyclin A18 and cyclin E. However, JUN also controls anti-proliferative cell
cycle regulators such as p53 (REFS 19,20), p21, INK4A13 and ARF19,21 (for an extensive review
of JUN transcriptional targets see REF. 8; representative JUN targets are shown in
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Supplementary information S1 (table)). Despite the high degree of sequence homology shared
between the three Jun proteins, they have distinct transactivation properties and biological
effects, mainly attributed to the lower degree of conservation of the amino-terminal region
(residues 1–95). Although JUN and JUND have strong transactivation activity, the
transcriptional activity of JUNB is much weaker22, and unlike JUN, both JUNB and JUND
can repress transcription22–24.

Consistent with its important role in cell cycle regulation, JUN levels and N-terminal
phosphorylation (which is crucial for its activation) are cell cycle regulated25,26. Ectopic
overexpression of JUN promotes cell growth in many cell lines27,28, whereas mouse fibroblasts
lacking JUN and cancer cells expressing TAM67 — a dominant-negative form of JUN that
lacks the transactivation domain encompassing amino acids 3–122 — exhibit severely impaired
or inhibited proliferation, demonstrating the central role that JUN has in cell growth and
tumorigenesis20,29–31. It should be noted that TAM67 generally inhibits AP1, regardless of
the specific binding partner, owing to its promiscuous interaction with most AP1 proteins. The
role of JUNB and JUND is more complex, and they can promote or inhibit growth under
different conditions. In Jun-knockout mice Junb can rescue Jun-induced phenotypes in a dose-
dependent manner32 and prevent p53 expression. These experiments suggest that, in the
absence of Jun, Junb exhibits proliferative effects and its anti-proliferative activity requires
the formation of a growth-inhibiting JUN–JUNB heterodimer. Similarly, Jund can suppress
p53-induced senescence and apoptosis in fibroblasts19, although it has also been observed to
function as a tumour suppressor10,13. It is thought that this dual role depends on an interaction
with the tumour suppressor Menin33. However, most of the evidence indicates that JUND
antagonizes JUN in cell growth regulation and transformation19. Notably, JUNB and JUND
are regulated by different protein kinases than the kinases that regulate JUN. Therefore, stimuli
that differentially activate JUNB and JUND regulatory kinases might dictate positive or
negative effects on the interaction of JUNB or JUND with JUN and so on their corresponding
response elements.

JUN function, stability34 and transactivation potential35 are crucially enhanced by
phosphorylation of Ser63 and Ser73 by JUN N-terminal kinase (JNK)17, which docks with
JUN primarily through the δ-domain (amino acids 34–60) of JUN8 (FIG. 1). Increasing
evidence implicates differential regulation of JUN by JNK1 compared with JNK2, which may
explain the variable binding affinity that JUN exhibits to JNK family members36,37. JNK-
mediated phosphorylation can stimulate JUN transcriptional activity by promoting either
interaction with basal transcriptional machinery or co-activators38–40, or by promoting
dissociation of transcriptional repressor complexes containing histone deacetylase 3 (REF. 41).
Therefore, JUN can regulate gene transcription through the regulation of transcriptional
machinery including RNA polymerase II, as well as other co-activators or co-repressors, and
chromatin structural changes. Although JNK phosphorylation sites on Ser63 and Ser73 are
conserved, the Jun proteins differ markedly in their regulation by JNK42. JUNB has a JNK
docking site, but the lack of phospho-acceptor residues prevents its phosphorylation by JNK.
By contrast, JUND lacks an effective docking site, resulting in only weak phosphorylation by
JNK42. These residues of JUND can still be phosphorylated by ERK1 and ERK2 (REF. 43).
Whether these phosphorylations affect differential dimerization with other AP1 partners
remains largely unexplored.

JUN degradation
In most cells, JUN is a labile protein (with a half-life of approximately 2 hours), and its
expression levels are tightly regulated by polyubiquitylation on multiple lysine residues and
concomitant degradation by the 26S proteasome34 (FIG. 2). Stabilization of JUN occurs
following inactivation of GSK3, attributable to ERK and PI3K–Akt signalling cascades44,45.
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Inhibition of GSK3-dependent phosphorylation of JUN on Ser243 prevents binding of the E3
ligase F-box and WD domain repeated 7 (FBXW7), which targets JUN for polyubiquitylation
and proteasomal degradation46,47. Whether FBXW7 degrades active (N-terminally
phosphorylated by JNK) or inactive JUN molecules, is controversial47,48. JUN stability is
increased after phosphorylation by JNK, which promotes degradation of JUN under non-
stressed conditions17,36,49,50. JUN is also subject to sumoylation, which reduces the
transcriptional activity of the JUN–FOS heterodimer51. Interestingly, the SUMO protease,
SENP1, increases JUN-mediated transcription through the desumoylation of the p300 CRD1
domain, offering an alternative mechanism for the regulation of JUN transcription52. Although
ubiquitin and SUMO modifications were also identified for other members of the AP1 family,
the role of these modifications remains largely unexplored. For example, JUNB seems to
undergo ubiquitylation-mediated proteasomal degradation, although the ubiquitin ligase that
controls this modification is still unknown53. JUNB was shown to be sumoylated in T cells,
resulting in its transcriptional activation54. Although JUND is also ubiquitylated, the
consequences of this modification are yet to be determined, as its ubiquitylation does not result
in its degradation55.

FOS and the Fos family
The Fos family of transcription factors is composed of FOS, FOSB, FOS-related antigen 1
(FRA1; also known as FOSL1) and FRA2 (also known as FOSL2). Apart from the classic bZIP
domain and basic DNA binding domain in other AP1 proteins, FOS and FOSB also have strong
transactivation domains, which FRA1 and FRA2 do not possess56. Fos family members can
heterodimerize with JUN and some Atf family members, giving rise to complexes with
different biochemical and transcriptional behaviour15. The negative charge of residues adjacent
to the hydrophobic interphase of their leucine zipper electrostatically destabilizes Fos
homodimers57 and favours the formation of JUN–FOS heterodimers, which exhibit increased
stability, DNA-binding activity and greater transforming potential.

Fos activation and degradation
Like Jun family members, FOS and FOSB are immediate early genes expressed at low or
undetectable levels in most cell types, with rapid and transient transcriptional activation
following mitogenic stimuli or cellular stress58. Within minutes of growth factor stimulation
and subsequent ERK activation, transcription of both genes is induced by ELK1, the cyclic
AMP response element-binding protein (CREB) and serum-response factor (SRF). Although
transcription of FRA1 and FRA2 also increases as a result of mitogenic stimulation through
TRE, SRE, MYC and Atf sites, they are often expressed under non-stimulated conditions59.
Similar to JUN, FRA1 transcription is partly autoregulated by an AP1 site60.

FOS activity and degradation are primarily regulated by phosphorylation. The major phospho-
acceptor sites include Thr325, Thr331 and Ser374, which are phosphorylated by ERK, Ser362,
phosphorylated by RSK1 and RSK2 (which are substrates of ERK), and Thr232,
phosphorylated by an unknown kinase61. Transient activation of ERK alone results in Ser374
and Ser362 phosphorylation and stabilization of FOS, but these are insufficient to increase its
transcriptional activity. Rather, these two modifications expose a docking site for ERK, which
facilitates ERK-mediated phosphorylation of Thr331 and Thr325 that increases FOS
transcriptional activity62. FOS is also phosphorylated by p38 at Thr232, Thr325, Thr331 and
Ser374 in response to ultraviolet light treatment63. Unlike JUN, FOS is primarily degraded by
the proteasome through ubiquitin-independent mechanisms. FOS degradation is differentially
regulated by autonomous degrons at its N-terminal and carboxy-terminal ends. The activity of
the C-terminal degron is reduced by phosphorylation of Ser362 and Ser374 (REF. 64). Similarly,
FRA1 stabilization relies on the inhibition of a C-terminal degron by ERK-mediated
phosphorylation of Ser252 and Ser265 (REF. 61). FOS shuttles between the nucleus and the
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cytoplasm owing to the presence of two nuclear localization signals. Dimerization with Jun
proteins inhibits FOS nuclear export (notably, the strongest nuclear retention of FOS is
observed when dimerized with JUN), thereby preventing the degradation of monomeric FOS
in the cytoplasm65. Like other integral members of the AP1 transcriptional complex, Fos family
members are reportedly deregulated in numerous human pathologies, and particularly in cancer
(Supplemental information S2 (table)).

ATF2
ATF2 is one of 16 members of the Atf and Creb group of bZIP transcription factors that
contribute to multiple cellular functions, from development to cellular responses to stresses,
such as hypoxia or DNA damage response66–68. Although particularly enriched in brain
tissue69, ATF2 is an ubiquitously expressed protein that is implicated in transcriptional control,
chromatin remodelling and the DNA damage response70–72. Complete somatic loss of Atf2
results in postnatal lethality, whereas partial deregulation of ATF2 is implicated in cancer73–
79.

ATF2 is located on chromosome 2q32 and comprises 12 exons, and in its full-length form, is
translated into a protein 505 amino acids in length80. Like JUN and FOS, ATF2 is also
characterized by a basic structural region and a leucine zipper domain that are crucial for AP1
homodimerization and heterodimerization81. ATF2 contains two canonical nuclear
localization sequences (NLS) and one export sequence (NES) in its basic and leucine zipper
regions, respectively. Its nuclear export has been shown to be CRM1-dependent82. Further
complexity is added by tissue-specific expression of ATF2 splice variants, although to date
studies evaluating the function of the splice variants have been limited (BOX 2).

ATF2 phosphorylation
ATF2 is negatively regulated by intramolecular auto-inhibitory binding of its C-terminal DNA
binding domain to its N-terminal activation domain83. This prevents ATF2 monomers from
dimerizing with partner proteins during unstimulated (unstressed) conditions. Whether ATF2
monomers have a cellular function is unknown. In response to stress stimuli or cytokines, ATF2
is phosphorylated on Thr69 and/or Thr71 by either JNK or p38. Certain growth factors have
also been shown to induce ERK-dependent phosphorylation of ATF2 on Thr71 followed by
RALGDS–SRC–p38-dependent phosphorylation of Thr69 (REF. 84). In all cases,
phosphorylation of these residues is required to de-repress ATF2 intramolecular inhibition
allowing its homodimerization or heterodimerization with other members of the AP1
transcription factor family, such as JUN (Supplemental information S3 (table)), CREB, Fos
and Fra85. The N-terminal phosphorylation of ATF2 and its dimerization, which facilitate
ATF2 transcriptional function, also promote its ubiquitylation and degradation — a mechanism
that limits ATF2 transcriptional output. Indeed, ATF2 mutants that are incapable of
dimerization exhibit enhanced protein stability86–88. Phosphorylation of ATF2 at C-terminal
Ser490 and Ser498 by ataxia-telangectasia mutated (ATM) is required for the contribution of
ATF2 to the DNA damage response. ATM phosphorylation of ATF2 is important for the intra-
S phase checkpoint following ionizing radiation (IR), essential for halting entry into the DNA
replication phase of cell cycle. Furthermore, this phosphorylation was also found to promote
ATF2 localization at irradiation-induced foci where it localizes with components of the DNA
repair machinery, including MRE11, RAD50 and NBS1 (REF. 89). Another kinase shown to
phosphorylate ATF2 on Ser121 is PKC, and this is essential for ATF2-mediated late-phase
response to stress90.
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ATF2 transcriptional targets
The basic DNA binding region of ATF2 homodimers exhibits binding specificity for CRE
sequences, TGACGTCA91. However, depending on specific stimulus and cell type context,
ATF2 can interact with other promoter elements including, but not limited to, other AP1
sequences, the proximal promoter of interferon-γ, stress-response element and the URE
promoter. Like Jun and Fos family members, ATF2 dimerization with different partners
significantly influences DNA binding specificity and affinity15,78,92,93, and ultimately the
transcriptional outcome.

Although it is unknown whether ATF2 itself is cell cycle regulated, ATF2 does regulate cell
cycle progression through the transcriptional control of several key genes, including RB1,
cyclin A, cyclin D, GADD45A, GADD45B and maspin (TABLE 2). ATF2 can further enhance
proliferation by promoting survival through regulation of Bcl2 expression in certain cell
types94. ATF2 transcriptionally regulates a wide array of gene targets controlling other cellular
pathways, ranging from Atf, Jun and Fos transcription factors, to extracellular, cytokine and
intracellular signalling pathways (TABLE 2).

JUN, FOS and ATF2 in tumorigenesis
JUN overexpression in vitro is sufficient, in certain cases, to transform mammalian cells8.
Consistently, loss of JUN decreases the incidence of papilloma outgrowth by abrogation of
epidermal growth factor receptor (EGFR) signalling in skin subjected to the two-stage skin
carcinogenesis protocol95. However, transformation of other cells, such as rat embryonic
fibroblasts, require the presence of either additional oncogenes such as Ras and SRC or other
AP1 components such as FRA1 (REFS 8,96). Despite its oncogenic potential in vitro, JUN
overexpression in transgenic mice does not result in the development of tumours8,13. HRAS-
induced transformation of immortalized mouse fibroblasts requires JUN expression, as
transformation is suppressed in the absence of JUN or the presence of a dominant-negative
JUN97. Fibroblasts with JUN Ala63 and Ala73 can be efficiently transformed by v-ras, but
show reduced tumorigenicity in nude mice98. This is consistent with the ability of v-jun to
contribute to cell transformation despite a lack of phosphorylation on the Ser63 and Ser73 sites.
The expression of oncogenic HRAS can increase AP1 transcriptional activity by activating
ERK and JNK, leading to increased expression of Fos proteins and N-terminal phosphorylation
of JUN99. An alternative mechanism was recently proposed by Talotta et al.100, who showed
that HRAS can trigger a positive AP1 feedback loop in solid tumours through promoting JUN–
FRA1 heterodimer formation with subsequent upregulation of microRNA-21. As a result,
miR-21 causes the downregulation of tumour suppressors and negative AP1 regulators,
including the tumour suppressor PTEN and programmed cell death 4 (PDCD4)100.

Fos family proteins have oncogenic potential both in vitro and in vivo by regulating
proliferation and transformation, angiogenesis, tumour invasion and metastasis101. Expression
of FRA1 confers anchorage-independent growth in rat fibroblasts in vitro and promotes tumour
development in athymic mice102. Similar to JUN, FOS overexpression correlates with tumour
grade and adverse outcome in some cancers. Its overexpression alone is sufficient to transform
chicken embryonic fibroblasts103, and its oncogenicity is linked to JUN, as immortalized
fibroblasts expressing v-ras, v-fos and a non-JNK phosphorylatable JUN mutant showed
reduced tumorigenicity in nude mice98. Transgenic expression of Fos promoted the
transformation of chondroblasts and osteoblasts, resulting in chondrogenic and osteogenic
tumour formation in mice104. Overexpression of FRA2 in mice can also induce tumour
formation in the pancreas, thymus and lung4. Knockdown or dominant-negative mutants of
FOS can abrogate transformation by upstream oncogenes, such as activated Ras105,106.
However, in contrast to their oncogenic contributions, recent reports suggest a possible tumour
suppressor role for the Fos family. For instance, ubiquitous FRA1 overexpression accelerates
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osteoblast differentiation and subsequent osteosclerosis107, whereas overexpression of FOS
inhibits cell cycle progression, stimulating mouse hepatocyte cell death and strongly suppresses
tumour formation in vivo108. Based on findings from human familial breast and ovarian cancer,
one possible mechanism for the tumour-suppressor activity of FOS could be its potential
involvement in the regulation of BRCA1 (REF. 109). The function of FOS in apoptosis might
also influence its capacity to suppress tumour formation (see below). Together, these data
highlight the functional duality of Fos family transcription factors and the importance of their
tissue-specific context and resulting heterodimerization partners.

Box 2

ATF2 splice variants

Differential splicing or promoter usage in a tissue-specific manner can result in the
expression of alternative splice isoforms of ATF2. Of the studied isoforms, most are
ubiquitously expressed, with particular variants exhibiting tissue-specific enrichment.
Studies on murine T cells revealed three isoforms (CRE-BP1, CRE-BP2 and CRE-BP3) of
ATF2. The basic leucine zipper domain (bZIP) domain is conserved between these isoforms
and variation between them resides mostly in their amino- and extreme carboxy-
termini194,195, where ATF2 is frequently post-translationally modified and regulated85.
Whereas CRE-BP2 lacks exons 1–7 and most of exon 12, CRE-BP2 varies from CRE-BP1
by an 8 amino acid substitution for the first 15 amino acids of CRE-BP1 only. This diversity
suggests conservation of the transcription factor function between these isoforms, but
variation in their regulation. ATF2-sm is an intriguing isoform of ATF2 that lacks all major
bZIP functional domains and comprises the first and last two exons of full-length ATF2
only. It has been shown to be transcriptionally active, and exhibits polarized expression
patterns in myometrial tissue and is differentially regulated before and during pregnancy
and labour. Such differential expression patterns suggest that different ATF2 isoforms have
tissue and temporal-specific functions, an idea that is supported by the finding that ATF2
and ATF2-sm transcriptionally regulate distinct subsets of genes196.

Evidence to date indicates that ATF2 can elicit tumour suppressor or oncogene activities in a
cell- and tissue-dependent context4. For example, in melanoma, inhibition of ATF2 activity
by ATF2 inhibitory peptides results in the suppression of tumorigenesis and metastasis,
concomitant with sensitization of melanoma tumour cells to genotoxic stress in vitro and in
vivo74,93,110,111. Consistent with its cell cycle regulatory role, increased expression of ATF2
increased cell proliferation in mouse cancer models112–114. By contrast, expression of
transcriptionally inactive ATF2 in the presence of oncogene activation (such as Ras mutations)
in non-melanoma skin cancers increases papilloma formation owing to the deregulated
expression of genes that promote proliferation, such as CTNNB1 (REF. 115). In agreement with
this, mammary tumour formation rates are accelerated in Atf2 heterozygous mice that also carry
a mutant allele of Trp53 (REF. 116). Such results indicate that depending on the tissue type,
ATF2 can elicit a tumour suppressive function, and that loss of ATF2 can cooperate with
oncogenes and mutation of tumour suppressor genes to promote tumorigenesis115. As the loss
of ATF2 alone does not induce tumour formation, but rather predisposes mouse models to
more rapid onset and increased tumour incidence with additional genetic mutations, the
functional loss of ATF2 might have a cooperative role as opposed to an initiator role in
multistage tumorigenic processes75,115.

A phenomenon that might shed light on the divergent function of ATF2 is its differential
subcellular localization. Immunohistochemical studies have demonstrated an upregulation and
activation of ATF2 in the nuclear compartment in certain cancer types75,117–119. Furthermore,
immunohistochemical analysis of patient-derived tumour tissue microarrays found enriched
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nuclear localization of ATF2 in advanced metastatic melanoma samples, which correlated with
poor prognosis and survival120. By contrast, melanoma samples exhibiting strong cytoplasmic
localization correlated with primary tumours and favourable prognosis. Analysis of tissue
microarrays from patient-derived squamous and basal cell carcinoma samples revealed reduced
nuclear levels and increased cytoplasmic levels of ATF2, further substantiating the idea that
ATF2 transcriptional activity may be attenuated in non-melanoma and papillary tumours115.
Recent studies using IR of prostate cancer cells showed that IR can induce cytoplasmic
localization of ATF2, in contrast to its predominant nuclear localization during basal
conditions121. Notably, cytoplasmic accumulation of ATF2 was associated with the appearance
of a neuroendocrine-like (differentiation) phenotype. As ATF2 is known to promote
differentiation in certain tissue contexts when dimerized with JUN, it is also possible that
enhanced ATF2 binding with JUN might outcompete JUN binding with other factors, such as
FOS and FRA2, both of which enhance cell cycle re-entry and progression122. Although the
significance of the cytosolic localization of ATF2 is not known, its distinct distribution and
activities probably depend on post-translational modification with available heterodimeric
partners of the AP1 network (FIG. 3). Dimerization with JUN has been shown to promote
nuclear import of ATF2 while monomeric ATF2 remained cytoplasmic, suggesting that
monomeric forms of ATF2 in the cytoplasm have an alternative function82.

AP1 in tumorigenesis
Chronic exposure to certain environmental or dietary carcinogens can promote tumorigenesis
through the stimulation of a wide array of signalling pathways, ranging from inflammatory to
pro-proliferative and survival pathways23, and carcinogens have been observed to induce or
at least correlate with increased AP1 activity. Long-term exposure to tobacco smoke or
nicotine, for instance, activates AP1 activity in mouse brain or epithelial cell lines, and
specifically, FOS and JUN are upregulated in rat and hamster cell lines during chronic asbestos
exposure123–126. Chronic ethanol exposure of human neuroblastoma cells enhances AP1
activity127. In several studies, AP1 activity is crucial for tumorigenesis, as inhibition of AP1
function by dominant-negative JUN mutants or AP1 decoys, for example, effectively inhibits
tumour formation in vivo. Such studies have also enabled the identification of AP1 target genes
involved in different aspects of carcinogenesis30,31,128,129. Interestingly, AP1 activity is
reported to be upregulated in certain tumour cell lines that acquire drug resistance after chronic
anti-oestrogen therapy or cisplatin treatment, suggesting the possibility that some
chemotherapeutic agents, similar to long-term carcinogenic stimuli, can elicit AP1 activation
that can facilitate tumour survival and render them refractory to long-term treatments130,131.
Numerous studies have shown the importance of AP1 in tumorigenesis.

Invasion and metastasis
Extensive evidence suggests that JUN and other AP1 proteins coordinate multigene expression
programmes required for invasive and metastatic behaviour (Supplementary information S1,
S3 (tables)). For example, AP1 has consistently been linked to invasive properties of aggressive
breast cancer132. Overexpression of JUN in MCF7 breast cancer cells increased tumour
formation in nude mice, as well as motility, invasiveness and liver metastasis27. Enforced
expression of JUN in human bronchial epithelial cells significantly increased cell viability and
colony formation in soft agar, whereas expression of TAM67 inhibited their anchorage-
independent growth29,133. Similarly, the treatment of oral squamous cell carcinoma cells with
AP1 decoys attenuates their invasiveness134. Consistently, cells from conditional Jun-
knockout mice exhibit increased cellular adhesion, stress fibre formation and reduced cellular
migration, a phenotype that was reverted by addition of stem cell factor (SCF; a JUN target
gene)135. Among genes that are regulated by JUN and may mediate these changes are genes
encoding Stathmin, HMGA1 or cyclin A18,136,137. Other JUN-induced genes that may
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contribute to enhanced tumorigenesis are involved in cellular migration and invasion as well
as inflammation (Supplementary information S1 (table)). These findings suggest that increased
expression of JUN, as well as FOS (see below), may be involved in the acquisition of anchorage
independence in the process of human carcinogenesis.

FOS family members transcriptionally regulate numerous genes involved in cell movement
and invasiveness, such as the genes encoding matrix metalloproteinase 1 (MMP1), MMP3,
cathepsin L and ezrin138,139. Therefore, it is not surprising that epithelial–mesenchymal
transition can be induced by FOS140. As FRA1-containing complexes can activate transcription
from both TRE and CRE elements, most of the genes shown to be activated by FOS have also
been shown to be activated by FRA1 (REFS 141,142).

Several observations support a contribution of ATF2 to the regulation of cellular invasiveness
and migration. For example, increased expression and phosphorylation of ATF2 correlates
with increased tumour invasiveness in patients with extramammary Paget's disease143.
Furthermore, in vitro studies with MCF10A cells demonstrate that ATF2 signalling driven by
p38 mediates the transcription of MMP2, thereby influencing invasive migration78. Other
members of the Atf and Creb family are also implicated in invasion and migration. For example,
the expression of a dominant-negative CREB mutant impairs the invasiveness of MeWo
melanoma cells144.

Angiogenesis
Activated JUN is predominantly found at the invasive front of tumours and is associated with
replicating cells, microvessel density and vascular endothelial growth factor A (VEGFA)
expression145. Targeting JUN by catalytic DNA molecules known as DNAzymes blocked
endothelial cell proliferation, migration, chemoinvasion and tubule formation in mouse tumour
models146. The same DNAzymes also suppressed the growth and angiogenesis of solid
squamous cell carcinomas in severe combined immunodeficient (SCID) mice by inhibiting
MMP2, MMP9, VEGFA and fibroblast growth factor 2 expression147. This is consistent with
previous data showing that a transactivation domain deletion mutant of JUN attenuated the
formation of squamous cell carcinoma148. JUN was also found to control expression of
proliferin, an angiogenic placental hormone that also has a role in tumour angiogenesis149.
Recently, it was shown that interleukin-7 (IL-7) promotes lymphangiogenesis in lung cancer
by inducing VEGFD expression that is dependent on FOS–JUN dimers150.

Survival and apoptosis
The pro-apoptotic or anti-apoptotic function of JUN is cell type specific and dependent on both
the type of external or internal stimuli and the potential JUN binding partners (Supplementary
information S1 (table)). In part, the overexpression of JUN has been implicated in the induction
of apoptosis in neurons151, endothelial152, myeloma cells153 and fibroblasts154, although the
JUN targets have remained mostly unidentified. Activation of JNK and subsequent JUN
phosphorylation has been associated to apoptotic cell death. However, Atf family members,
such as ATF3, can cooperatively promote survival with JUN through the induction of heat
shock protein 27 in neurons during injury, indicating that the heterodimerization of JUN with
other AP1 factors can antagonize its pro-apoptotic functions.

Enhanced growth conferred by induction of JUN has been attributed not only to cell cycle
alterations, but also to enhanced cell survival that is concomitant with the reduction of cell
death. Among the mediators for cell survival signalling, JUN suppresses PTEN155, which
inhibits cell growth through negative regulation of the Akt survival pathway. Eferl et al.156

showed that mice with a targeted disruption of Jun in hepatocytes156 presented with reduced
liver tumour mass and higher survival rates than control mice in a chemically induced
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hepatocellular carcinoma model. JUN deficiency resulted in the accumulation of p53 and
increased apoptosis without affecting the proliferation rate of these cells, confirming a role for
JUN in cell survival. This function of JUN seems to be distinct from its role in proliferation,
which also involves p53 (REF. 157). Therefore, JUN may promote tumorigenesis by
antagonizing the proapoptotic and anti-proliferative activities of p53 through different
mechanisms.

FOS also seems to have a pro-apoptotic function, as do FRA1 and FRA2. FOS mediates MYC-
induced cell death, probably through the p38 MAPK pathway and the induction of CD95L and
tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)158,159. Moreover, reduced
levels of FOS, FRA1 or FRA2 might potentiate chemoresistance160–162. The proapoptotic
downstream molecular targets of FOS are mostly poorly understood. Interestingly, JUN and
FRA1 also induce the expression of the tumour suppressor ARF — a key link between
oncogenic signalling and the p53 pathway — which resulted in the induction of growth arrest
in primary mouse fibroblasts21.

In contrast to its pro-proliferative function, ATF2 has been found to mediate apoptosis in
various circumstances, although specific signalling mechanisms remain largely understudied.
For example, in chondrocytes, ATF2 and CREB1 can heterodimerize to directly regulate the
Bcl2 promoter94. ATF2 was shown to mediate apoptosis in non-differentiated PC12 cells163.

With strong evidence to support the role of JUN in normal and tumour cell biology, and the
observations that JUN can also induce apoptosis, under certain conditions111,154,164, it is likely
that these diverse functions are dependent on the nature of its heterodimeric partners. For
example, abrogation of ATF2 interaction with JNK sensitizes melanoma cells to anisomycin-
induced cell death that is JUN- and JUND-dependent, suggesting that a pro-apoptotic JUN
and/or JUND-containing AP1 complex is enriched in the absence of active ATF2 (REF. 111).
In neurons, JUN dimerization to ATF2 promotes apoptosis through the transcription of harakiri,
whereas this is abrogated by increases in FOS expression, probably because FOS competes
with JUN for binding to ATF2 (REF. 165). Conversely, FOS–JUN dimers have been shown to
induce apoptosis in prostate cancer cells by the transcriptional repression of the anti-apoptotic
molecule CASP8 and FADD-like apoptosis regulator (FLIP)166. These data imply that
perturbations in the fine balance between the tissue-specific compositions of AP1 dimers are
sufficient to alter transcriptional programmes for either cell survival or cell death, and are likely
to have a major role during tumorigenesis.

Stem cell self-renewal and differentiation
Several in vitro and in vivo studies have indicated that AP1 function is involved in stem cell
and tumour cell self-renewal or differentiation. Whereas JUN is stabilized at the protein and
mRNA levels during induced differentiation of teratocarcinoma and erythroid cells,
respectively, other Jun family members, such as JUNB, can negatively regulate proliferation
of long-term repopulating myeloid stem cells167,168. JUN is particularly implicated in
hepatogenesis and cardiac development9,169, and consistent with this JUN and FOS are
implicated in icariin-induced cardiomyocyte differentiation of mouse embryonic stem
cells170. Downregulation of cyclin A during differentiation of human embryonic carcinoma
cells depends on promoter depletion of ATF1 and ATF2 (REF. 113). By contrast, ATF2 also
interacts with undifferentiated embryonic cell transcription factor 1 (UTF1), an important
transcriptional co-activator during early embryogenesis that apparently enhances ATF2-
dependent transcription in F9 embryonic carcinoma cells171, indicating specific AP1
transcriptional programme switches during differentiation.
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Jun, Fos and ATF2 in human cancer
Many human cancers exhibit overexpression of JUN and/or other Jun family members (TABLE
1), which is predominantly the result of activation of upstream oncogenes, including Ras,
BRAF and EGFR. Activating mutations of NRAS or BRAF, which occur in >70% of
melanomas, super-activate ERK, driving increased expression of JUN by increasing its
transcription and stability44. Moreover, inhibition of JUN function consistently attenuates the
growth of various human tumour cell lines both in vitro and in mouse xenografts172. Consistent
with the idea that JUN promotes tumorigenicity is its overexpression in some of the more
aggressive CD30-positive lymphomas173,174. Similarly, increased JUN levels correlate with
more advanced tumour stage and poor prognosis in prostate cancer175. In breast cancer, other
altered pathways, including RB, VEGF and EGFR have been implicated in inducing increased
JUN expression.

Interestingly, altered FOS expression in tumours depends on the tissue of origin. Its increased
expression is associated with poor clinical outcomes in osteosarcoma and endometrial
carcinoma, and loss of FOS expression is associated with tumour progression and adverse
outcome in ovarian carcinoma and gastric carcinoma176,177. FRA1 overexpression is
associated with diverse tumours, including thyroid, breast, lung, brain, nasopharyngeal,
oesophageal, endometrial, prostate and colon carcinomas, along with glioblastomas and
mesotheliomas, and so may hold prognostic value178 (Supplementary information S2 (table)).

Overexpression and activation (phosphorylation) of ATF2, altered subcellular localization and
enhanced interaction with other AP1 proteins, in particular with oncogenic JUN, is observed
in many cancer types and transformation models46,117. Such increased expression of ATF2
might be of diagnostic value in the clinic118. However, loss of ATF2 function is also observed
in cancer. Although germline mutations in ATF2 are infrequent, mutations that inactivate ATF2
have been observed in certain cancer types such as lung and breast cancer, and
neuroblastoma76,77.

The dynamic network of AP1 signalling
The diverse functions attributed to AP1 complexes have proved difficult to discern as each is
dictated by the distinct heterodimeric combination that can be assembled from an array of
potential complexes that these proteins can form. ATF2, for example, was reported to form 8
different complexes with other members of the Atf, Jun and Fos family, whereas JUN can form
15 different dimeric complexes. FOS was reported to form heterodimeric complexes with all
Jun members, ATF2, ATF4, CREB1 and all Maf members. Differential dimerization between
JUN, ATF2 and FOS with different family members is sufficient to alter their promoter-binding
specificity, drastically changing the transcriptional capacity, protein stability and localization,
and ultimately the transcriptional repertoire of these proteins179. Such dimerization and
consequent functional differences are largely attributed to tissue- and cell type-specific
expression levels of the individual AP1 proteins and the degree of activation of upstream
pathways such as MAPK or SAPK pathways. For example, whereas JUN–ATF2180,181 and/
or JUN–FOS dimers182 can promote proliferation in some cell types, in skin and breast cancer,
ATF2 suppresses tumour outgrowth115,116. In addition to cell- and tissue-specific conditions,
AP1 dimer composition is subject to influence by cell cycle progression and specific stimuli.
For example, mitogenic stimulation upregulates FOS–JUN dimers, which are later displaced
by FRA1 and FRA2 in accordance with the duration of ERK1 and ERK2 activity183.

Apart from variation in transcriptional activity that can be attributed to altered promoter
binding, individual AP1 proteins (particularly those exhibiting weak transactivation potential,
such as JUNB, JUND, FRA1 and FRA2) can function as transcriptional repressors, by
competitively out-binding partners of transcriptionally active AP1 complexes165,184,185,186.
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This explains why some dimers activate, and others repress transcription through binding at
the same DNA promoter sites187. Accordingly, as the composition of the AP1 complexes is
paramount to their function, deregulation of this composition in favour of more oncogenic
partnerships may account for the transcriptional alterations observed during tumorigenesis.

A revealing example of altered AP1 composition relevant for cancer is that observed during
Ras transformation. Oncogenic Ras constitutively activates ERK and increases transcription
of JUN, JUNB, FRA1 and FRA2, but not of FOS, increasing the population of JUN–FRA1
dimers and thus increasing AP1 activity188. Similarly, the adenoviral protein E1A alters AP1
composition by promoting ATF2–JUN dimer formation, resulting in strong activation of
ATF2, but weak activation of ATF1 or CREB1 (REFS 189–191). The implication of this dynamic
heterodimerization is exemplified by CREB1 dimerization with ATF2, which abrogates the
ability of E1A to bind to ATF2, presumably suppressing that particular axis of E1A-mediated
transformation189,192.

Collectively, these studies support the idea that manipulation of AP1 composition might have
therapeutic applications in cancer treatment. The oncogenicity of JUN in the studies discussed
above largely depends on its binding to ATF2, which is consistent with earlier studies showing
that mutant v-jun with enhanced ATF2-binding capacity and mutant ATF2 that binds JUN with
increased affinity can both enhance growth factor independence and tumorigenicity in
vivo111,180. JUN–FOS and JUN–ATF2 dimers clearly have crucial roles in promoting
tumorigenesis, however, the antagonistic effects of FOS- and ATF2-containing AP1
complexes implies that distinct cellular pathways are activated by each of these complexes.
The complex changes in AP1 members at the transcriptional, translational and post-
translational levels that enable their dynamic interchange during tumour development are still
subject to intense investigation. The availability of genomic and proteomic technologies
combined with the power of systems biology will, we hope, reveal the composition and
therefore the mechanisms underlying this dynamic network in the near future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Structure and regulation of JUN
JUN is encoded by a 3.34 kb intronless gene, located on chromosome 1 (1p32-p31) and results
in the expression of a 334 amino acid protein product composed of four main domains, which
are involved in DNA binding, transcription and dimerization197. JUN activity is regulated by
post-translational modifications, which are largely controlled by components of the MAPK
family of serine and threonine kinases, including JUN N-terminal kinase (JNK), ERK and p38
isoforms17. JUN is phosphorylated on Ser63 and Ser73 by JNK, increasing its stability and
transactivation potential35. JNK also phosphorylates Thr91 and Thr93, which are required for
DNA binding and activation of its transcriptional activity. JUN is subject to ubiquitylation and
this requires phosphorylation at Thr239 by glycogen synthase kinase 3 (GSK3). GSK3 can
target JUN only once Ser243 is phosphorylated. Phosphorylation on these sites is required for
recruitment of the F-box and WD domain repeated 7 (FBXW7) ubiquitin ligase198. Inactivation
of GSK3, owing to the activation of ERK and PI3K–Akt signalling cascades results in JUN
stabilization44,45. The effect of GSK3 can be antagonized by the dephosphorylation of Ser243
by calcineurin199. JUN can be sumoylated on Lys257 and Lys229, which leads to a reduced
transcriptional activity51. ERK induces the acetylation of the lysine residues in the JUN DNA
binding region200, thereby increasing JUN transcriptional activity. Post-translational
modifications are indicated as small coloured circles. The four domains are indicated as
follows: the δ-domain is orange, the basic region (DNA binding) is blue, the transactivation
domain is yellow and the leucine zipper is purple. A, acetylation; dP, dephosphorylation; P,
phosphorylation; S, sumoylation.
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Figure 2. Mechanisms of JUN degradation
Several mechanisms exist to limit JUN stablity. Under non-stressed conditions, JUN N-
terminal kinase (JNK) is tightly bound to JUN, targeting JUN for ubiquitylation and
degradation. Activation of JNK by stress results in JUN phosphorylation and dissociation from
JNK, enhancing its protein stability, although phosphorylation on Ser63 and Ser73 promotes
the F-box and WD domain repeated 7 (FBXW7)-mediated degradation of JUN48. As part of a
feedforward mechanism, JNK also phosphorylates the E3 ligase Itch in T cells after stimulation,
accelerating degradation of JUN and JUNB, independently of Ser63 and Ser73
phosphorylation34. Phosphorylation on JUN at Thr239 by glycogen synthase kinase 3 (GsK3)
(FIG. 1) allows FBXW7 binding and ubiquitin-mediated degradation by a Skp1-Cullin1-F-box
(SCF) complex. Following osmotic stress, MEKK1 can activate JUN N-terminal
phosphorylation by activating MKK4, an upstream kinase for JNKs that can also function as
a JUN E3 ubiquitin ligase, promoting its ubiquitin–proteasome-dependent degradation34 (not
shown). De-etiolated 1 (DET1) contributes to JUN degradation by promoting the formation of
a ubiquitin ligase complex containing DNA damage binding protein 1 (DDB1), cullin 4A
(CUL4A), regulator of cullins 1 (ROC1) and constitutively photomorphogenic 1 (COP1)201.
Other mechanisms modulating JUN ubiquitin-mediated degradation have been reported34. P,
phosphorylation; Ub, ubiquitylation.
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Figure 3. Network of AP1 signalling
ERK, JUN N-terminal kinase (JNK) and p38 are predominantly responsible for the
phosphorylation and activation of FOS, JUN and ATF2 respectively (black arrows) in response
to stress, mitogens or oncogene activation. ERK and JNK also regulate FOS and JUN
degradation, respectively (not depicted) and participate in ATF2 activation (dashed arrows).
ERK also induces the transcription of FOS through the activation of non-AP1 transcription
factors (TFs). Transcription of some AP1 proteins (that is, JUN and FRA1) is regulated by
crosstalk among AP1 complexes (red arrows) as well as by autoregulation (circular red arrows).
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Table 1
Deregulation of Jun family members in cancer

Observation Tumour type Method Refs

JUN amplification and JUN overexpression Liposarcoma CGH, FISH, Real-time PCR and WB 12

Increased JUN expression Non-small-cell lung cancer IHC 29,202

Acute myeloid leukaemia Microarray 203

Colorectal neoplasm IHC 204

Pancreatic cancer IHC 205

Oral squamous cell carcinomas IHC 206

Increased levels of phosphorylated JUN Astrocytoma IHC 207

Invasive breast cancer IHC 146

Osteosarcoma IHC 208

Glioblastoma IHC 209

Melanoma WB 204

JUN and FOS overexpression Prostate cancer TMA 175

JUN and JUND overexpression Breast cancer TMA 210

JUN and JUNB overexpression CD30+ lymphoma* TMA and IHC 174

JUND overexpression Primary cutaneous B cell lymphoma IHC 211

JUNB and JUND overexpression Colorectal adenocarcinoma IHC and WB 212

Increased AP1 activity Lung and bladder carcinoma EMSA 213

Increased AP1 binding activity (FOS–JUNB) Endometrial cancer WB 214

Cervical cancer EMSA and WB 215

CGH, comparative genomic hybridization; EMSA, electrophoretic mobility shift assay; FISH, fluorescence in situ hybridization; IHC,
immunohistochemistry; TMA, tumour microarray; WB, western blot.

*
Classic Hodgkin lymphoma, anaplastic large cell lymphoma, diffuse large B cell lymphoma.
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Table 2
ATF2 transcriptional targets

Gene Context Methods Refs

Extracellular stimuli

IL8 ATF2 recruits macroH2A nucleosome to repress IL8
transcription

HeLa and Namalwa B-cells,
WB and Luc

72

Pdgfra ATF2-null mice exhibit decreased PDGFRα expression
levels that are rescued on re-expression of ATF2

Mutant mice and CHO cells,
WB and Luc

73

MMP2 ATF2 activates MMP2 transcription MCF10A cells and Luc 78

PLAU ATF2 cooperatively induces PLAU in response to IL-1 and
TPA

HepG2 cells, WB and Luc 216

Crip2 TGFβ upregulation of CRP2 requires ATF2 Rat and mouse vascular
smooth muscle cells, WB and
Luc

217

Psen1 Presenilin 1 expression is reduced in Atf2-null keratinocytes Murine keratinocytes and
WB

115

SELE ATF2 contributes to E-selectin induction during
inflammatory response

Human endothelial cells, WB
and Luc

218

TNF Autoamplification of death signals are mediated by ATF2 Jurkat and CEM cells, and
WB

219

ATF3 Radiation-activated ATM signalling induces ATF3 through
ATF2

Normal human diploid
fibroblasts and WB

220

Nos2a ATF2 mediates NOS2A upregulation in rat glial cells C6 glial cells and Luc 221

IFNG Jun–ATF2 dimers regulate IFNG transcription through
proximal promoter

Jurkat cells, WB and Luc 222

Hspa5 ATF2 and CREB mediate stress induction of HSPA5 9L rat brain tumour cells and
WB

223

Th ATF2 positively regulates tyrosine hydroxylase
transcription

PC12D cells, WB and Luc 224

Cell cycle and transcription

CCND1 p38 and ATF2 induce cyclin D1 in breast cancer in response
to oestradiol and spermine

MCF7 cells, WB and Luc 119

Ccna1 ATF2 mediates serum induction of cyclin A Rat chondrosarcoma cells,
WB and Luc

114

Rb1 ATF2 modulates RB during skeletal growth ATDC cells and primary
chondrocytes, WB and Luc

112

PI5 ATF2 binds directly to the PI5 promoter (which encodes
maspin)

Mutant mice, MEFs, MCF7
cells, WB and Luc

116

GADD45A ATF2 is recruited by OCT1 and NF1 to the GADD45A
promoter to activate transcription

Mutant mice, MEFs, MCF7
cells, WB and Luc

116

PKC PKC phosphorylates ATF2 to activate JUN transcription F9 teratoma, MEFs, HeLa
cells, WB and Luc

90

Ppargc1a ATF2 mediates exercise-induced PGC1α upregulation C2C12 myocytes, WB and
Luc

225

Atf and Creb, Jun and Fos family
genes

ATF2 transcriptionally regulates other members of the Atf
and Creb, and Jun and Fos families, contingent on cell type
and stimulus context

F9 teratoma, COS-1, MCF7
cells, WB and Luc

4,82, 226

Mapk14 ATF2 negatively feeds back on p38 signalling through
transcriptional induction of MAPK phosphatases

Mutant mouse tissue and
cells, and WB

68

Cell death
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Gene Context Methods Refs

Bcl2 ATF2 controls Bcl2 promoter activation in chondrocytes Mutant mice, WB and Luc 94

TRAIL Auto-amplification of death signals are mediated by ATF2 Jurkat and CEM cells, and
WB

219

ACHE ATF2 mediates hydrogen peroxide-induction of
acetylcholinesterase

293T cells, WB and Luc 227

ACHE, acetylcholinesterase; ATM, ataxia-telangectasia mutated; CCND1, cyclin D1; CHO, Chinese hamster ovary; Crip2, cysteine-rich intestinal
protein 2; Hspa5, heat shock protein A5; IFNG, interferon (IFN)-γ; IL8, interleukin-8; Luc, luciferase assay; MEF, mouse embryonic fibroblast;
MMP2, matrix metalloproteinase 2; Nos2a, nitric oxide synthase 2A; Pdgfra, platelet derived growth factor A; PI5, protease inhibitor 5; PLAU, urinary
palminogen activator; Ppargc1a, peroxisome proliferator-activated receptor-γ coactivator 1α; Psen1, presenilin 1; SELE, E selectin; TGFβ,
transforming growth factor-β; Th, tyrosine hydroxylase; TNF, tumour necrosis factor; TRAIL, tumour necrosis factor-related apoptosis-inducing
ligand; WB, western blot.
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