221 research outputs found

    The Correlated Colors of Transneptunian Binaries

    Full text link
    We report resolved photometry of the primary and secondary components of 23 transneptunian binaries obtained with the Hubble Space Telescope. V-I colors of the components range from 0.7 to 1.5 with a median uncertainty of 0.06 magnitudes. The colors of the primaries and secondaries are correlated with a Spearman rank correlation probability of 99.99991%, 5 sigma for a normal distribution. Fits to the primary vs. secondary colors are identical to within measurement uncertainties. The color range of binaries as a group is indistinguishable from that of the larger population of apparently single transneptunian objects. Whatever mechanism produced the colors of apparently single TNOs acted equally on binary systems. The most likely explanation is that the colors of transneptunian objects and binaries alike are primordial and indicative of their origin in a locally homogeneous, globally heterogeneous protoplanetary disk.Comment: 28 pages, 4 figure, 4 tables. accepted to Icaru

    Near-field spatial and temporal blast pressure distributions from non-spherical charges: Horizontally-aligned cylinders

    Get PDF
    Research into the characterisation of blast loading on structures following the detonation of a high explosive commonly assumes that the charge is spherical. This has the advantage of simplifying experimental, analytical and computational studies. In practice, however, designers of protective structures must often consider explosive threats which have other geometric forms, which has significant influence on the loading imparted to structures very close to the explosion source. Hitherto, there has been little definitive experimental investigation of the ‘near-field’ blast load parameters from non-spherical explosive charges and studies that have been conducted are usually confined to measurement of the total impulse imparted to a target. Currently, a detailed understanding of the development of loading on a target, necessary to fully inform the design process and appraise the efficacy of predictions from computational models, is lacking. This article, the first part of a wider investigation into these geometrical effects, details work conducted to address this deficiency. Results are presented from an experimental study of loading from detonations of cylindrical charges, set with the longitudinal axis parallel to an effectively rigid target, instrumented to facilitate the capture of the spatial and temporal evolution of the loading at different radial and angular offsets from the charge. These results are compared against loads from spherical charges and the effect of charge shape is identified. Significant differences are observed in the mechanisms and magnitude of loading from cylindrical and spherical charges, which is confirmed through the use of numerical analysis. The overall study provides insights which will assist the future design of effective protection systems

    Mutual Events in the Cold Classical Transneptunian Binary System Sila and Nunam

    Full text link
    Hubble Space Telescope observations between 2001 and 2010 resolved the binary components of the Cold Classical transneptunian object (79360) Sila-Nunam (provisionally designated 1997 CS29). From these observations we have determined the circular, retrograde mutual orbit of Nunam relative to Sila with a period of 12.50995 \pm 0.00036 days and a semimajor axis of 2777 \pm 19 km. A multi-year season of mutual events, in which the two near-equal brightness bodies alternate in passing in front of one another as seen from Earth, is in progress right now, and on 2011 Feb. 1 UT, one such event was observed from two different telescopes. The mutual event season offers a rich opportunity to learn much more about this barely-resolvable binary system, potentially including component sizes, colors, shapes, and albedo patterns. The low eccentricity of the orbit and a photometric lightcurve that appears to coincide with the orbital period are consistent with a system that is tidally locked and synchronized, like the Pluto-Charon system. The orbital period and semimajor axis imply a system mass of (10.84 \pm 0.22) \times 10^18 kg, which can be combined with a size estimate based on Spitzer and Herschel thermal infrared observations to infer an average bulk density of 0.72 +0.37 -0.23 g cm^-3, comparable to the very low bulk densities estimated for small transneptunian binaries of other dynamical classes.Comment: In press in Icaru

    Spin relaxation: From 2D to 1D

    Full text link
    In inversion asymmetric semiconductors, spin-orbit interactions give rise to very effective relaxation mechanisms of the electron spin. Recent work, based on the dimensionally constrained D'yakonov Perel' mechanism, describes increasing electron-spin relaxation times for two-dimensional conducting layers with decreasing channel width. The slow-down of the spin relaxation can be understood as a precursor of the one-dimensional limit

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    Search for Higgs Bosons in e+e- Collisions at 183 GeV

    Get PDF
    The data collected by the OPAL experiment at sqrts=183 GeV were used to search for Higgs bosons which are predicted by the Standard Model and various extensions, such as general models with two Higgs field doublets and the Minimal Supersymmetric Standard Model (MSSM). The data correspond to an integrated luminosity of approximately 54pb-1. None of the searches for neutral and charged Higgs bosons have revealed an excess of events beyond the expected background. This negative outcome, in combination with similar results from searches at lower energies, leads to new limits for the Higgs boson masses and other model parameters. In particular, the 95% confidence level lower limit for the mass of the Standard Model Higgs boson is 88.3 GeV. Charged Higgs bosons can be excluded for masses up to 59.5 GeV. In the MSSM, mh > 70.5 GeV and mA > 72.0 GeV are obtained for tan{beta}>1, no and maximal scalar top mixing and soft SUSY-breaking masses of 1 TeV. The range 0.8 < tanb < 1.9 is excluded for minimal scalar top mixing and m{top} < 175 GeV. More general scans of the MSSM parameter space are also considered.Comment: 49 pages. LaTeX, including 33 eps figures, submitted to European Physical Journal

    A Measurement of the Product Branching Ratio f(b->Lambda_b).BR(Lambda_b->Lambda X) in Z0 Decays

    Get PDF
    The product branching ratio, f(b->Lambda_b).BR(Lambda_b->Lambda X), where Lambda_b denotes any weakly-decaying b-baryon, has been measured using the OPAL detector at LEP. Lambda_b are selected by the presence of energetic Lambda particles in bottom events tagged by the presence of displaced secondary vertices. A fit to the momenta of the Lambda particles separates signal from B meson and fragmentation backgrounds. The measured product branching ratio is f(b->Lambda_b).BR(Lambda_b->Lambda X) = (2.67+-0.38(stat)+0.67-0.60(sys))% Combined with a previous OPAL measurement, one obtains f(b->Lambda_b).BR(Lambda_b->Lambda X) = (3.50+-0.32(stat)+-0.35(sys))%.Comment: 16 pages, LaTeX, 3 eps figs included, submitted to the European Physical Journal

    Measurement of the Michel Parameters in Leptonic Tau Decays

    Get PDF
    The Michel parameters of the leptonic tau decays are measured using the OPAL detector at LEP. The Michel parameters are extracted from the energy spectra of the charged decay leptons and from their energy-energy correlations. A new method involving a global likelihood fit of Monte Carlo generated events with complete detector simulation and background treatment has been applied to the data recorded at center-of-mass energies close to sqrt(s) = M(Z) corresponding to an integrated luminosity of 155 pb-1 during the years 1990 to 1995. If e-mu universality is assumed and inferring the tau polarization from neutral current data, the measured Michel parameters are extracted. Limits on non-standard coupling constants and on the masses of new gauge bosons are obtained. The results are in agreement with the V-A prediction of the Standard Model.Comment: 32 pages, LaTeX, 9 eps figures included, submitted to the European Physical Journal

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.
    corecore