39 research outputs found

    cGMP-Dependent Protein Kinase Type I Is Implicated in the Regulation of the Timing and Quality of Sleep and Wakefulness

    Get PDF
    Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3′,5′-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1–4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep

    Spatial overlap of shark nursery areas and the salmon farming industry influences the trophic ecology of Squalus acanthias on the southern coast of Chile

    Get PDF
    © 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. Potential interactions between marine predators and humans arise in the southern coast of Chile where predator feeding and reproduction sites overlap with fisheries and aquaculture. Here, we assess the potential effects of intensive salmon aquaculture on food habits, growth, and reproduction of a common predator, the spiny dogfish—identified as Squalus acanthias via genetic barcoding. A total of 102 (89 females and 13 males) individuals were collected during winter and summer of 2013–2014 from the Chiloé Sea where salmon aquaculture activities are concentrated. The low frequency of males in our study suggests spatial segregation of sex, while immature and mature females spatially overlapped in both seasons. Female spiny dogfish showed a functional specialist behavior as indicated by the small number of prey items and the relative high importance of the austral hake and salmon pellets in the diet. Immature sharks fed more on pellets and anchovies than the larger hake-preferring mature females. Our results also indicate that spiny dogfish switch prey (anchovy to hake) to take advantage of seasonal changes in prey availability. Despite differences in the trophic patterns of S. acanthias due to the spatial association with intensive salmon farming, in this region, there appears to be no difference in fecundity or size at maturity compared to other populations. Although no demographic effects were detected, we suggest that a range of additional factors should be considered before concluding that intensive aquaculture does not have any impact on these marine predators.Link_to_subscribed_fulltex

    Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects

    Get PDF
    Biosynthetic nerve grafts are desired as alternative to autologous nerve grafts in peripheral nerve reconstruction. Artificial nerve conduits still have their limitations and are not widely accepted in the clinical setting. Here we report an analysis of fine-tuned chitosan tubes used to reconstruct 10 mm nerve defects in the adult rat. The chitosan tubes displayed low, medium and high degrees of acetylation (DAI: ˜ 2%, DA: ˜ 5%, DAIII: ˜ 20%) and therefore different degradability and microenvironments for the regenerating nerve tissue. Short and long term investigations were performed demonstrating that the chitosan tubes allowed functional and morphological nerve regeneration similar to autologous nerve grafts. Irrespective of the DA growth factor regulation demonstrated to be the same as in controls. Analyses of stereological parameters as well as the immunological tissue response at the implantation site and in the regenerated nerves, revealed that DAI and DAIII chitosan tubes displayed some limitations in the support of axonal regeneration and a high speed of degradation accompanied with low mechanical stability, respectively. The chitosan tubes combine several pre-requisites for a clinical acceptance and DAII chitosan tubes have to be judged as the most supportive for peripheral nerve regeneration.This work has received funding from the European Community's Seventh Framework Programme (FP7-HEALTH-2011) under grant agreement no 278612 (BIOHYBRID)

    Probing the Functional Heterogeneity of Surface Binding Sites by Analysis of Experimental Binding Traces and the Effect of Mass Transport Limitation

    Get PDF
    Many techniques rely on the binding activity of surface-immobilized proteins, including antibody-based affinity biosensors for the detection of analytes, immunoassays, protein arrays, and surface plasmon resonance biosensors for the study of thermodynamic and kinetic aspects of protein interactions. To study the functional homogeneity of the surface sites and to characterize their binding properties, we have recently proposed a computational tool to determine the distribution of affinity and kinetic rate constants from surface binding progress curves. It is based on modeling the experimentally measured binding signal as a superposition of signals from binding to sites spanning a range of rate and equilibrium constants, with regularization providing the most parsimonious distribution consistent with the data. In the present work, we have expanded the scope of this approach to include a compartment-like transport step, which can describe competitive binding to different surface sites in a zone of depleted analyte close to the sensor surface. This approach addresses a major difficulty in the analysis of surface binding where both transport limitation as well as unknown surface site heterogeneity may be present. In addition to the kinetic binding parameters of the ensemble of surface sites, it can provide estimates for effective transport rate constants. Using antibody-antigen interactions as experimental model systems, we studied the effects of the immobilization matrix and of the analyte flow-rate on the effective transport rate constant. Both were experimentally observed to influence mass transport. The approximate description of mass transport by a compartment model becomes critical when applied to strongly transport-controlled data, and we examined the limitations of this model. In the presence of only moderate mass transport limitation the compartment model provides a good description, but this approximation breaks down for strongly transport-limited surface binding. In the latter regime, we report experimental evidence for the formation of gradients within the sensing volume of the evanescent field biosensor used
    corecore