61 research outputs found

    DEVELOPMENT AND IMPLEMENTATION OF A HOMOGENEOUS AND A HETEROGENEOUS ANTHROPOMORPHIC END TO END QUALITY ASSURANCE AUDIT SYSTEM PHANTOM FOR MAGNETIC RESONANCE GUIDED RADIOTHERAPY MODALITIES RANGING FROM 0.35 T TO 1.50 T

    Get PDF
    Introduction: Magnetic resonance (MR) guided radiation therapy (MRgRT) is an emerging field that integrates an MR imager with either a linear accelerator or three radioactive cobalt-60 sources. Before institutions participate in multi-institutional NCI-sponsored clinical trials, they are required to perform a credentialing test provided by IROC-Houston. During the credentialing test, end-to-end phantoms are used to evaluate the institution’s ability to perform consistent and accurate radiation treatments. IROC-Houston’s conventional anthropomorphic phantoms are not visible in MR, thus they are insufficient for MRgRT systems. The purpose of this work was to create an anthropomorphic thorax and a head and neck (H&N) phantom for MRgRT systems with magnetic fields ranging from 0.35T to 1.5T. Methods: Over 80 synthetic materials were examined as potential materials used to construct the MRgRT thorax and H&N phantoms. Materials were characterized by: 1) measuring Hounsfield units, 2) visualizing in MR and CT imagers and 3) evaluating their dosimetric characteristics. Once materials were selected for the MRgRT phantoms, radiochromic film and double-loaded TLDs were then characterized in a 1.5T and a 0.35T MR environment. Reproducibility measurements on double-loaded TLDs were performed by using an acrylic block and irradiating it in 0T/1.5T and 0T/0.35T configurations on the Unity system and the MRIdian Cobalt 60 system, respectively. Geometrical thorax and H&N phantom slabs were designed to mimic similar interface conditions seen in anthropomorphic phantoms, but were simplified to reduce manufacturing time. The geometrical phantoms were designed with a rectangular tumor centrally located around surrounding tissue. These two phantoms were used to characterize radiochromic EBT3 film and TLDs by comparing beam profiles and point dose measurements irradiated with and without magnetic fields, respectively. GEANT4 Monte Carlo simulations validated the detectors in both Unity 0T/1.5T and MRIdian 0T/0.35T configurations. Two MRgRT anthropomorphic (H&N and thorax) phantoms were designed, manufactured and evaluated. A reproducibility and feasibility study was conducted to evaluate the phantom’s performance on MRgRT systems. Results: This study found four materials which were tissue equivalent and visible on both MR and CT. Additionally, this study showed negligible difference in dose response between TLDs and radiochromic film when irradiated in 0.35T and 1.5T magnetic field environments. Two anthropomorphic phantoms were constructed and evaluated. The anthropomorphic thorax and H&N phantoms passed IROC-Houston’s 7%/5mm and 7%/4mm gamma passing criteria, respectively. Conclusions: An anthropomorphic thorax and an H&N phantom were tissue equivalent, compatible with MR and CT workflows and could be used as end-to-end QA tools for MRgRT systems with magnetic fields ranging from 0.35T to 1.5T

    The Data Acquisition System for the KOTO Detector

    Get PDF
    AbstractThe Data Acquisition (DAQ) for the KOTO detector is designed around a 14-bit 125MHz ADC module, which measures the energy and the time of photomultiplier pulses from about 4000 readout channels. The Trigger has a two-tiered design, with a first level decision based on the time-aligned energy sum over the entire calorimeter and a second level decision based on clustering and in-time veto signal rejection. Data accepted by the second level trigger are read out via Gigabit Ethernet and passed to a computer farm for event building and data storage

    Matrigel 3D bioprinting of contractile human skeletal muscle models recapitulating exercise and pharmacological responses

    Get PDF
    A key to enhance the low translatability of preclinical drug discovery are in vitro human three-dimensional (3D) microphysiological systems (MPS). Here, we show a new method for automated engineering of 3D human skeletal muscle models in microplates and functional compound screening to address the lack of muscle wasting disease medication. To this end, we adapted our recently described 24-well plate 3D bioprinting platform with a printhead cooling system to allow microvalve-based drop-on-demand printing of cell-laden Matrigel containing primary human muscle precursor cells. Mini skeletal muscle models develop within a week exhibiting contractile, striated myofibers aligned between two attachment posts. As an in vitro exercise model, repeated high impact stimulation of contractions for 3 h by a custom-made electrical pulse stimulation (EPS) system for 24-well plates induced interleukin-6 myokine expression and Akt hypertrophy pathway activation. Furthermore, the known muscle stimulators caffeine and Tirasemtiv acutely increase EPS-induced contractile force of the models. This validated new human muscle MPS will benefit development of drugs against muscle wasting diseases. Moreover, our Matrigel 3D bioprinting platform will allow engineering of non-self-organizing complex human 3D MPS

    Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis

    Get PDF
    The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or "priming," using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer

    A cohort of 17 patients with kyphoscoliotic Ehlers-Danlos syndrome caused by biallelic mutations in FKBP14: expansion of the clinical and mutational spectrum and description of the natural history.

    Get PDF
    PurposeIn 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers-Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date.MethodsWe report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data.ResultsBased on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals.ConclusionOur data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS

    Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors1,2, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies

    The German National Registry of Primary Immunodeficiencies (2012-2017)

    Get PDF
    Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs. Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata¼ and Excel. Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy. Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment

    Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer

    Get PDF
    Background and aims: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress and novel therapeutic response in PC to develop a biomarker driven therapeutic strategy targeting DDR and replication stress in PC. Methods: We interrogated the transcriptome, genome, proteome and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient derived xenografts and human PC organoids. Results: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, co-segregates with response to platinum (P < 0.001) and PARP inhibitor therapy (P < 0.001) in vitro and in vivo. We generated a novel signature of replication stress with which predicts response to ATR (P < 0.018) and WEE1 inhibitor (P < 0.029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < 0.001) but not associated with DDR deficiency. Conclusions: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR proficient PC, and post-platinum therapy
    • 

    corecore