207 research outputs found
Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan
Using results from four coupled global carbon cycle-climate models combined with in situ observations, we estimate the effects of future global warming and ocean acidification on potential habitats for tropical/subtropical and temperate coral communities in the seas around Japan. The suitability of coral habitats is classified on the basis of the currently observed regional ranges for temperature and saturation states with regard to aragonite (Ωarag). We find that, under the "business as usual" SRES A2 scenario, coral habitats are projected to expand northward by several hundred kilometers by the end of this century. At the same time, coral habitats are projected to become sandwiched between regions where the frequency of coral bleaching will increase, and regions where Ωarag will become too low to support sufficiently high calcification rates. As a result, the habitat suitable for tropical/subtropical corals around Japan may be reduced by half by the 2020s to 2030s, and is projected to disappear by the 2030s to 2040s. The habitat suitable for the temperate coral communities is also projected to decrease, although at a less pronounced rate, due to the higher tolerance of temperate corals for low Ωarag. Our study has two important caveats: first, it does not consider the potential adaptation of the coral communities, which would permit them to colonize habitats that are outside their current range. Second, it also does not consider whether or not coral communities can migrate quickly enough to actually occupy newly emerging habitats. As such, our results serve as a baseline for the assessment of the future evolution of coral habitats, but the consideration of important biological and ecological factors and feedbacks will be required to make more accurate projections
Slx8 removes Pli1-dependent protein-SUMO conjugates including SUMOylated Topoisomerase I to promote genome stability
Peer reviewedPublisher PD
A Measurement of the Electric Form Factor of the Neutron through at (GeV/c)
We report the first measurement of the neutron electric form factor
via using a solid polarized target. was
determined from the beam-target asymmetry in the scattering of longitudinally
polarized electrons from polarized deuterated ammonia, ND. The
measurement was performed in Hall C at Thomas Jefferson National Accelerator
Facility (TJNAF) in quasi free kinematics with the target polarization
perpendicular to the momentum transfer. The electrons were detected in a
magnetic spectrometer in coincidence with neutrons in a large solid angle
segmented detector. We find at (GeV/c).Comment: Latex2e 5 pages, 3 figure
Extensive dissolution of live pteropods in the Southern Ocean
The carbonate chemistry of the surface ocean is rapidly
changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite—a metastable form of calcium carbonate with rapid dissolution kinetics—may become undersaturated by 2050 (ref. 2). Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94–
1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities2,4, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand
Climate-carbon cycle uncertainties and the Paris Agreement
The Paris Agreement aims to address the gap between existing climate policies and policies consistent with ‘holding the increase in global average temperature to well below 2C’. The feasibility of meeting the target has been questioned both in terms of the possible requirement for negative emissions, and ongoing debate on the sensitivity of the climate-carbon cycle system. Using a sequence of ensembles of a fully dynamic three-dimensional climate-carbon cycle model, forced by emissions from an integrated assessment model of regional-level climate policy, economy, and technological transformation, we show that a reasonable interpretation of the Paris Agreement is still technically achievable. Specifically, limiting peak (decadal) warming to less than 1.7°C, or end-century warming to less than 1.54°C, occurs in 50% of our simulations in a policy scenario without net negative emissions or excessive stringency in any policy domain. We evaluate two mitigation scenarios, with 200 GTC and 307 GTC post-2017 emissions, quantifying spatio-temporal variability of warming, precipitation, ocean acidification and marine productivity. Under rapid decarbonisation decadal variability dominates the mean response in critical regions, with significant implications for decision making, demanding impact methodologies that address non-linear spatio-temporal responses. Ignoring carbon-cycle feedback uncertainties (explaining 47% of peak warming uncertainty) becomes unreasonable under strong mitigation conditions.We acknowledge C-EERNG and Cambridge Econometrics for support, and funding from EPSRC (to J.-F.M., fellowship number EP/ K007254/1); the Newton Fund (to J.-F.M., P.S. and J.E.V., EPSRC grant number EP/N002504/1 and ESRC grant number ES/N013174/1), NERC (to N.R.E., P.H. and H.P., grant number NE/P015093/1), CONICYT (to P.S.), the Philomathia Foundation (to J.E.V.) and Horizon 2020 (to H.E.P. and J.-F.M., the Sim4Nexus project)
Measurement of the Electric Form Factor of the Neutron at Q^2=0.5 and 1.0 (GeV/c)^2
The electric form factor of the neutron was determined from measurements of
the \vec{d}(\vec{e},e' n)p reaction for quasielastic kinematics. Polarized
electrons were scattered off a polarized deuterated ammonia target in which the
deuteron polarization was perpendicular to the momentum transfer. The scattered
electrons were detected in a magnetic spectrometer in coincidence with neutrons
in a large solid angle detector. We find G_E^n = 0.0526 +/- 0.0033 (stat) +/-
0.0026 (sys) and 0.0454 +/- 0.0054 +/- 0.0037 at Q^2 = 0.5 and 1.0 (GeV/c)^2,
respectively.Comment: 5 pages, 2 figures, as publishe
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large
spectrometer magnets of the PANDA detector set-up. It shows the conceptual
design of the magnets and their anticipated performance. It precedes the tender
and procurement of the magnets and, hence, is subject to possible modifications
arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti
Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski,
Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy),
Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR
The possibility of measuring the proton electromagnetic form factors in the
time-like region at FAIR with the \PANDA detector is discussed. Detailed
simulations on signal efficiency for the annihilation of into a
lepton pair as well as for the most important background channels have been
performed. It is shown that precision measurements of the differential cross
section of the reaction can be obtained in a wide
angular and kinematical range. The individual determination of the moduli of
the electric and magnetic proton form factors will be possible up to a value of
momentum transfer squared of (GeV/c). The total cross section will be measured up to (GeV/c).
The results obtained from simulated events are compared to the existing data.
Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations,
4 tables, 9 figure
Long-Term climate change commitment and reversibility: An EMIC intercomparison
This is the final version of the article. Available from the American Meteorological Society via the DOI in this record.This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. MostEMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6-6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs forRCPs 4.5-8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination ofCO2 emissions in allEMICs.Restoration of atmosphericCO2 fromRCPto preindustrial levels over 100-1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2. © 2013 American Meteorological Society.KZ and AJW acknowledge support from the National Science and Engineering Research Council (NSERC) Discovery Grant Program. AJW acknowledges support from NSERC's G8 Research Councils Initiative on Multilateral Research Funding Program. AVE and IIM were supported by the President of Russia Grant 5467.2012.5, by the Russian Foundation for Basic Research, and by the programs of the Russian Academy of Sciences. EC, TF, HG, and GPB acknowledge support from the Belgian Federal Science Policy Office. FJ, RS, and MS acknowledge support by the Swiss National Science Foundation and by the European Project CARBOCHANGE (Grant 264879), which received funding from the European Commission's Seventh Framework Programme (FP7/2007–2013). PBH and NRE acknowledge support from EU FP7 Grant ERMITAGE 265170
- …