1,731 research outputs found

    Providing Self-Aware Systems with Reflexivity

    Full text link
    We propose a new type of self-aware systems inspired by ideas from higher-order theories of consciousness. First, we discussed the crucial distinction between introspection and reflexion. Then, we focus on computational reflexion as a mechanism by which a computer program can inspect its own code at every stage of the computation. Finally, we provide a formal definition and a proof-of-concept implementation of computational reflexion, viewed as an enriched form of program interpretation and a way to dynamically "augment" a computational process.Comment: 12 pages plus bibliography, appendices with code description, code of the proof-of-concept implementation, and examples of executio

    Multisensory causal inference in the brain

    Get PDF
    At any given moment, our brain processes multiple inputs from its different sensory modalities (vision, hearing, touch, etc.). In deciphering this array of sensory information, the brain has to solve two problems: (1) which of the inputs originate from the same object and should be integrated and (2) for the sensations originating from the same object, how best to integrate them. Recent behavioural studies suggest that the human brain solves these problems using optimal probabilistic inference, known as Bayesian causal inference. However, how and where the underlying computations are carried out in the brain have remained unknown. By combining neuroimaging-based decoding techniques and computational modelling of behavioural data, a new study now sheds light on how multisensory causal inference maps onto specific brain areas. The results suggest that the complexity of neural computations increases along the visual hierarchy and link specific components of the causal inference process with specific visual and parietal regions

    Validation of the Portuguese version of the Lithium Attitudes Questionnaire (LAQ) in bipolar patients treated with lithium: cross-over study

    Get PDF
    BACKGROUND: Poor adherence to lithium is very common in bipolar patients and it is a frequent cause of recurrence during prophylactic treatment. Several reports suggest that attitudes of bipolar patients interfere with adherence to lithium. The Lithium Attitudes Questionnaire (LAQ) is a brief questionnaire developed as a means of identifying and grouping the problems patients commonly have with taking lithium regularly. The original version is validated in patients, but a validated version in Portuguese is not yet available. METHODS: One-hundred six patients with bipolar disorder (DSM-IV criteria) criteria under lithium treatment for at least one month were assessed using LAQ. LAQ is a brief questionnaire administered under interview conditions, which includes 19 items rating attitudes towards prophylactic lithium treatment. We analysed the internal consistency, concurrent validity, sensitivity and specificity of the Portuguese version of LAQ. RESULTS: The internal consistency, evaluated by Cronbach's alpha was 0.78. The mean total LAQ score was 4.1. Concurrent validity was confirmed by a negative correlation between plasma lithium concentration and total LAQ score (r = -0,198; p = 0.048). We analysed the scale's discriminative capacity revealing a sensitivity of 69% and a specificity of 71% in the identification of negative attitudes of bipolar patients. CONCLUSION: The psychometric assessment of the Portuguese version of LAQ showed good internal consistency, sensitivity and specificity. The results were similar to the original version in relation to attitudes of bipolar patients towards lithium therapy

    Adaptation and validation of the Portuguese version of the Lithium Knowledge Test (LKT) of bipolar patients treated with lithium: cross-over study

    Get PDF
    OBJECTIVE: Adherence problems are a common feature among bipolar patients. A recent study showed that lithium knowledge was the main difference between adherent and non adherents bipolar patients. The Lithium Knowledge Test (LKT), a brief questionnaire, was developed as a means of identifying aspects of patients' practical and pharmacological knowledge which are important if therapy is to be safe and effective. The original English version is validated in psychiatric population, but a validated Portuguese one is not yet available. METHODS: One hundred six patients selected were diagnosed with bipolar disorder (I or II) according to DSM-IV criteria and had to be on lithium treatment for at least one month. The LKT was administered on only one occasion. We analysed the internal consis tency, concurrent validity, sensitivity and specificity of the LKT for the detection of the knowledge about lithium treatment of bipolar patients. RESULTS: The internal consistency, evaluated by Cronbach's alpha was 0.596. The mean of total score LKT by bipolar patients was 9.0 (SD: 0.75) for men and 8.74 (SD: 0.44) for women. Concurrent validity based on plasma lithium concentration showed a significant correlation between the total LKT score and plasma lithium (r = 0,232; p = 0.020). The sensitivity was 84% and specificity was 81%. CONCLUSION: LKT is a rapid, reliable instrument which appears to be as effective as a lengthier standard interview with a lithium clinic doctor, and which has a high level of acceptability to lithium patients. We found that the psychometric assessment of the Portuguese version of LKT showed good internal consistency, sensitivity and specificity

    Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update

    Get PDF
    This document is an update to the 2011 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and VKORC1 genotypes and warfarin dosing. Evidence from the published literature is presented for CYP2C9, VKORC1, CYP4F2, and rs12777823 genotype-guided warfarin dosing to achieve a target international normalized ratio of 2-3 when clinical genotype results are available. In addition, this updated guideline incorporates recommendations for adult and pediatric patients that are specific to continental ancestry

    A stitch in time: Efficient computation of genomic DNA melting bubbles

    Get PDF
    Background: It is of biological interest to make genome-wide predictions of the locations of DNA melting bubbles using statistical mechanics models. Computationally, this poses the challenge that a generic search through all combinations of bubble starts and ends is quadratic. Results: An efficient algorithm is described, which shows that the time complexity of the task is O(NlogN) rather than quadratic. The algorithm exploits that bubble lengths may be limited, but without a prior assumption of a maximal bubble length. No approximations, such as windowing, have been introduced to reduce the time complexity. More than just finding the bubbles, the algorithm produces a stitch profile, which is a probabilistic graphical model of bubbles and helical regions. The algorithm applies a probability peak finding method based on a hierarchical analysis of the energy barriers in the Poland-Scheraga model. Conclusions: Exact and fast computation of genomic stitch profiles is thus feasible. Sequences of several megabases have been computed, only limited by computer memory. Possible applications are the genome-wide comparisons of bubbles with promotors, TSS, viral integration sites, and other melting-related regions.Comment: 16 pages, 10 figure

    Multisensory body representation in autoimmune diseases

    Get PDF
    Body representation has been linked to the processing and integration of multisensory signals. An outstanding example of the pivotal role played by multisensory mechanisms in body representation is the Rubber Hand Illusion (RHI). In this paradigm, multisensory stimulation induces a sense of ownership over a fake limb. Previous work has shown high interindividual differences in the susceptibility to the RHI. The origin of this variability remains largely unknown. Given the tight and bidirectional communication between the brain and the immune system, we predicted that the origin of this variability could be traced, in part, to the immune system's functioning, which is altered by several clinical conditions, including Coeliac Disease (CD). Consistent with this prediction, we found that the Rubber Hand Illusion is stronger in CD patients as compared to healthy controls. We propose a biochemical mechanism accounting for the dependency of multisensory body representation upon the Immune system. Our finding has direct implications for a range of neurological, psychiatric and immunological conditions where alterations of multisensory integration, body representation and dysfunction of the immune system co-exist

    A Standardised Procedure for Evaluating Creative Systems: Computational Creativity Evaluation Based on What it is to be Creative

    Get PDF
    Computational creativity is a flourishing research area, with a variety of creative systems being produced and developed. Creativity evaluation has not kept pace with system development with an evident lack of systematic evaluation of the creativity of these systems in the literature. This is partially due to difficulties in defining what it means for a computer to be creative; indeed, there is no consensus on this for human creativity, let alone its computational equivalent. This paper proposes a Standardised Procedure for Evaluating Creative Systems (SPECS). SPECS is a three-step process: stating what it means for a particular computational system to be creative, deriving and performing tests based on these statements. To assist this process, the paper offers a collection of key components of creativity, identified empirically from discussions of human and computational creativity. Using this approach, the SPECS methodology is demonstrated through a comparative case study evaluating computational creativity systems that improvise music

    Ubiquitous Crossmodal Stochastic Resonance in Humans: Auditory Noise Facilitates Tactile, Visual and Proprioceptive Sensations

    Get PDF
    BACKGROUND: Stochastic resonance is a nonlinear phenomenon whereby the addition of noise can improve the detection of weak stimuli. An optimal amount of added noise results in the maximum enhancement, whereas further increases in noise intensity only degrade detection or information content. The phenomenon does not occur in linear systems, where the addition of noise to either the system or the stimulus only degrades the signal quality. Stochastic Resonance (SR) has been extensively studied in different physical systems. It has been extended to human sensory systems where it can be classified as unimodal, central, behavioral and recently crossmodal. However what has not been explored is the extension of this crossmodal SR in humans. For instance, if under the same auditory noise conditions the crossmodal SR persists among different sensory systems. METHODOLOGY/PRINCIPAL FINDINGS: Using physiological and psychophysical techniques we demonstrate that the same auditory noise can enhance the sensitivity of tactile, visual and propioceptive system responses to weak signals. Specifically, we show that the effective auditory noise significantly increased tactile sensations of the finger, decreased luminance and contrast visual thresholds and significantly changed EMG recordings of the leg muscles during posture maintenance. CONCLUSIONS/SIGNIFICANCE: We conclude that crossmodal SR is a ubiquitous phenomenon in humans that can be interpreted within an energy and frequency model of multisensory neurons spontaneous activity. Initially the energy and frequency content of the multisensory neurons' activity (supplied by the weak signals) is not enough to be detected but when the auditory noise enters the brain, it generates a general activation among multisensory neurons of different regions, modifying their original activity. The result is an integrated activation that promotes sensitivity transitions and the signals are then perceived. A physiologically plausible model for crossmodal stochastic resonance is presented
    corecore