363 research outputs found

    MicroRNAs as Biomarkers in Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an incurable and fatal disorder characterized by the progressive loss of motor neurons in the cerebral cortex, brain stem, and spinal cord. Sporadic ALS form accounts for the majority of patients, but in 1⁻13.5% of cases the disease is inherited. The diagnosis of ALS is mainly based on clinical assessment and electrophysiological examinations with a history of symptom progression and is then made with a significant delay from symptom onset. Thus, the identification of biomarkers specific for ALS could be of a fundamental importance in the clinical practice. An ideal biomarker should display high specificity and sensitivity for discriminating ALS from control subjects and from ALS-mimics and other neurological diseases, and should then monitor disease progression within individual patients. microRNAs (miRNAs) are considered promising biomarkers for neurodegenerative diseases, since they are remarkably stable in human body fluids and can reflect physiological and pathological processes relevant for ALS. Here, we review the state of the art of miRNA biomarker identification for ALS in cerebrospinal fluid (CSF), blood and muscle tissue; we discuss advantages and disadvantages of different approaches, and underline the limits but also the great potential of this research for future practical applications

    The HFE p.H63D (p.His63Asp) Polymorphism Is a Modifier of ALS Outcome in Italian and French Patients with SOD1 Mutations

    Get PDF
    Background: Data from published studies about the effect of HFE polymorphisms on ALS risk, phenotype, and survival are still inconclusive. We aimed at evaluating whether the p.H63D polymorphism is a modifier of phenotype and survival in SOD1-mutated patients. Methods: We included 183 SOD1-mutated ALS patients. Mutations were classified as severe or mild according to the median survival of the study population. Patients were screened for the HFE p.H63D polymorphism. Survival was calculated using the Kaplan-Meier modeling, and differences were measured by the log-rank test. Multivariable analysis was performed with the Cox proportional hazards model (stepwise backward). Results: SOD1 severe mutation carriers show more frequent familial history for ALS and shorter survival compared to mild mutation carriers. Carriers and non-carriers of the p.H63D polymorphism did not differ in terms of sex ratio, frequency of positive familial history, age at onset, and bulbar/spinal ratio. In univariate and in Cox multivariable analysis using sex, age at onset, site of onset, family history, country of origin, and mutation severity as covariates, p.H63D carriers had a longer survival (p = 0.034 and p = 0.004). Conclusions: We found that SOD1-mutated ALS patients carrying the p.H63D HFE polymorphism have a longer survival compared to non-carriers, independently of sex, age and site of onset, family history, nation of origin, and severity of mutations, suggesting a possible role as disease progression modifier for the p.H63D HFE polymorphism in SOD1-ALS

    Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis

    Get PDF
    Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.Objective: To identify the genetic variants associated with juvenile ALS.Design, Setting, and Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.Main Outcomes and Measures: De novo variants present only in the index case and not in unaffected family members.Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.Conclusions and Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.</p

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    Molecular genetic analysis of cerebral cavernous malformations: an update

    No full text
    Cerebral cavernous malformations (CCM) can occur either as sporadic or familial form with autosomal dominant inheritance. Three CCM genes have been identified: CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10). In this review, we provide an overall update on genetics of cerebral cavernous malformations. We discuss the main features of these three genes and provide an updated listing of the mutations identified so far. Most of them lead to a premature stop codon regardless of the nature of the variation, including nonsense mutations, small deletions/insertions, and intronic/exonic substitutions causing an altered splicing and a frame-shift. In addition, deletions or duplications of one or more exons of CCM genes can be responsible for the disease. We examine the use of different mutation screening methods to identify all these mutations, providing a comprehensive approach to CCM genetic diagnosis. We also report the main strategies to evaluate the actual impact of the mutations on the protein function. Moreover, we recapitulate the available data on penetrance, phenotype-genotype correlations, and founder effect. Finally, we discuss the main aspects of genetic counseling, including genetic risk assessment in family members, in sporadic patients with multiple CCMs, and in the case of de novo mutations

    Genotyping of Macrophage Migration Inhibitory Factor (MIF) CATT5–8 Repeat Polymorphism by Denaturing High-Performance Liquid Chromatography (DHPLC)

    No full text
    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine expressed in many different cell types and implicated in the pathogenesis of numerous acute and chronic inflammatory diseases. Variable Number of Tandem Repeat (VNTR) CATT5-8 at position -794 in the promoter of the MIF gene has been associated with several human pathological conditions. Different methods for genotyping the CATT tetranucleotide repeats have been described. Here, we report, for the first time, the complete characterization of the CATT5-8 repeat polymorphism using exclusively the denaturing high-performance liquid chromatography (DHPLC) technique under partially denaturing conditions. This approach, based on a step-by-step DHPLC protocol, allowed the accurate determination of all the homozygous and heterozygous genotypes in 350 DNA samples from control subjects. The results were validated by comparison to DNA sequencing, and the DHPLC approach was accurate, sensitive, and highly reproducible. Data from the current study demonstrate that this method of analysis by DHPLC may represent a powerful and sensitive alternative tool for a rapid and efficient genotyping of short tandem repeats presenting a limited number of alleles

    Identification of miRNAs as Potential Biomarkers in Cerebrospinal Fluid from Amyotrophic Lateral Sclerosis Patients

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disorder. Since no diagnostic laboratory test exists, the identification of specific biomarkers could be fundamental in clinical practice. microRNAs (miRNAs) are considered promising biomarkers for neurodegenerative diseases. The aim of the study was to identify a CSF miRNA set that could differentiate ALS from non-ALS condition. miRNA profiling in CSF from ALS patients (n&nbsp;=&nbsp;24; eight with C9orf72 expansion) and unaffected control subjects (n&nbsp;=&nbsp;24) by quantitative reverse transcription PCR identified fourteen deregulated miRNAs. Validation experiments confirmed eight miRNAs as significantly deregulated in ALS. No significant differences were observed between ALS patients with or without C9orf72 expansion. The receiver operator characteristic (ROC) curve analyses revealed the highest diagnostic accuracy for the upregulated miR181a-5p and the downregulated miR21-5p and miR15b-5p. The miR181a-5p/miR21-5p and miR181a-5p/miR15b-5p ratios detected ALS with 90 and 85&nbsp;% sensitivity and 87 and 91&nbsp;% specificity, respectively, confirming the application potential as disease biomarkers. These deregulated miRNAs are implicated in apoptotic way and provide insight into processes responsible for motor neuron degeneration

    Familial hemiplegic migraine: a ion channel disorder

    No full text
    At present, little information is available on the genetics of common migraines, most likely to be considered a multifactorial disease. Recently, the CACNA1A gene encoding the brain-specific P/Q type calcium channel alpha(1) subunit, has been cloned and mutations in this gene, located on chromosome 19p13, have been shown to be involved in familial hemiplegic migraine (FHM), a rare autosomal dominantly inherited subtype of migraine with aura. Being part of the migraine spectrum, FHM represents a good model to study the genetics of more common forms of migraine. Different classes of mutations within the CACNA1A gene have been associated with different diseases, thus identifying a new member among 'channelopathies'. Variable clinical expression and genetic heterogeneity of FHM will be discussed
    corecore