4 research outputs found

    Quantitative home-based assessment of Parkinson’s symptoms: The SENSE-PARK feasibility and usability study

    Get PDF
    Published version, also available at http://dx.doi.org/10.1186/s12883-015-0343-zBackground: Currently, assessment of symptoms associated with Parkinson’s disease is mainly performed in the clinic. However, these assessments have limitations because they provide only a snapshot of the condition. Methods: The feasibility and usability of an objective, continuous and relatively unobtrusive system (SENSE-PARK System), which consists of wearable sensors (three worn during the day and one worn at night), a smartphone-based App, a balance board and computer software, was tested 24/7 over 12 weeks in a study including 22 PD patients. During the first four weeks of the study, patients did not get feedback about their performance, during the last eight weeks they did. The study included seven clinical visits with standardized interviews, and regular phone contact. The primary outcome was the number of drop-outs during the study. As secondary outcomes, the Post-Study System Usability Questionnaire (PSSUQ), score and information obtained from the standardized interviews were used to evaluate the usability of the system. Results: All patients completed the study. The participants rated the usability of the SENSE-PARK System with a mean score of 2.67 (±0.49) on the PSSUQ. The interviews revealed that most participants liked using the system and appreciated that it signaled changes in their health condition. Conclusions: This 12 week controlled study demonstrates that the acceptance level of PD patients using the SENSE-PARK System as a home-based 24/7 assessment is very good. Particular emphasis should be given to a user-friendly design. Motivation to wear such a system can be increased by providing direct feedback about the individual health condition

    Transcription activator like effector (TALE)-directed piggyBac transposition in human cells

    No full text
    Insertional therapies have shown great potential for combating genetic disease and safer methods would undoubtedly broaden the variety of possible illness that can be treated. A major challenge that remains is reducing the risk of insertional mutagenesis due to random insertion by both viral and non-viral vectors. Targetable nucleases are capable of inducing double-stranded breaks to enhance homologous recombination for the introduction of transgenes at specific sequences. However, off-target DNA cleavages at unknown sites can lead to mutations that are difficult to detect. Alternatively, the piggyBac transposase is able perform all of the steps required for integration; therefore, cells confirmed to contain a single copy of a targeted transposon, for which its location is known, are likely to be devoid of aberrant genomic modifications. We aimed to retarget transposon insertions by comparing a series of novel hyperactive piggyBac constructs tethered to a custom transcription activator like effector DNA-binding domain designed to bind the first intron of the human CCR5 gene. Multiple targeting strategies were evaluated using combinations of both plasmid-DNA and transposase-protein relocalization to the target sequence. We demonstrated user-defined directed transposition to the CCR5 genomic safe harbor and isolated single-copy clones harboring targeted integrations
    corecore