164 research outputs found

    Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression.</p> <p>Methods</p> <p>To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an <it>in vitro </it>Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis.</p> <p>Results</p> <p>Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation.</p> <p>Conclusions</p> <p>Bioinformatics analysis followed by functional genomics demonstrated that AKR1C3 overexpression promotes angiogenesis and aggressiveness of PC-3 cells. These results also suggest that AKR1C3-mediated tumor angiogenesis is regulated by estrogen and androgen metabolism with subsequent IGF-1R and Akt activation followed by VEGF expression in PCa cells.</p

    Can we identify patients at risk of life-threatening allergic reactions to food?

    Get PDF
    Anaphylaxis has been defined as a “severe, life-threatening generalized or systemic hypersensitivity reaction”. However, data indicate that the vast majority of food-triggered anaphylactic reactions are not life-threatening. Nonetheless, severe life-threatening reactions do occur, and are unpredictable. We discuss the concepts surrounding perceptions of severe, life-threatening allergic reactions to food by different stakeholders, with particular reference to the inclusion of clinical severity as a factor in allergy and allergen risk management. We review the evidence regarding factors which might be used to identify those at most risk of severe allergic reactions to food, and the consequences of misinformation in this regard. For example, a significant proportion of food-allergic children also have asthma, yet almost none will experience a fatal food-allergic reaction; asthma is not, in itself, a strong predictor for fatal anaphylaxis. The relationship between dose of allergen exposure and symptom severity is unclear. While dose appears to be a risk factor in at least a subgroup of patients, studies report that individuals with prior anaphylaxis do not have a lower eliciting dose than those reporting previous mild reactions. It is therefore important to consider severity and sensitivity as separate factors, as a highly sensitive individual will not necessarily experience severe symptoms during an allergic reaction. We identify the knowledge gaps which need to be addressed to improve our ability to better identify those most at risk of severe foodinduced allergic reactions

    Estradiol synthesis within the human brain

    Get PDF
    Estradiol biosynthesis is catalyzed by the enzyme aromatase, the product of the CYP19A1 gene. Aromatase is expressed in the brain, where it is involved not only in the control of neuroendocrine events and reproduction, but also in the regulation of neural development, synaptic plasticity and cell survival. In this review we summarize the existing data related with the detection of aromatase in human brain, with particular emphasis in the so-called “non-primary reproductive” areas. Besides hypothalamus, amygdala and preoptic/septal areas, aromatase is expressed in certain regions of basal forebrain, cerebral cortex, hippocampus, thalamus, cerebellum and brainstem of the human brain. Aromatase in human brain is produced by neurons, but there is also an astrocyte subpopulation that constitutively expresses the enzyme. The use of different methodological approaches, including the in vivo analysis by positron emission tomography of human subjects, has permitted to draw a general map of human brain aromatase, but the detailed distribution map is still far to be completed. On the other hand, despite the fact that there is only one aromatase protein, there are multiple mRNA transcripts that differ in the 5'-untranslated region, where regulatory elements reside. To date, some of the aromatase transcripts characteristic of cerebral cortex, as well as of human cell lines of neural origin, have been identified. This characteristic may confer tissue or even region-specific regulation of the expression and therefore it is conceivable to develop selective aromatase modulators to regulate the expression of the enzyme in the human brai

    Author Response

    No full text
    corecore