85 research outputs found

    New Insights into Fluoroquinolone Resistance in Mycobacterium tuberculosis: Functional Genetic Analysis of gyrA and gyrB Mutations

    Get PDF
    Fluoroquinolone antibiotics are among the most potent second-line drugs used for treatment of multidrug-resistant tuberculosis (MDR TB), and resistance to this class of antibiotics is one criterion for defining extensively drug resistant tuberculosis (XDR TB). Fluoroquinolone resistance in Mycobacterium tuberculosis has been associated with modification of the quinolone resistance determining region (QRDR) of gyrA. Recent studies suggest that amino acid substitutions in gyrB may also play a crucial role in resistance, but functional genetic studies of these mutations in M. tuberculosis are lacking. In this study, we examined twenty six mutations in gyrase genes gyrA (seven) and gyrB (nineteen) to determine the clinical relevance and role of these mutations in fluoroquinolone resistance. Transductants or clinical isolates harboring T80A, T80A+A90G, A90G, G247S and A384V gyrA mutations were susceptible to all fluoroquinolones tested. The A74S mutation conferred low-level resistance to moxifloxacin but susceptibility to ciprofloxacin, levofloxacin and ofloxacin, and the A74S+D94G double mutation conferred cross resistance to all the fluoroquinolones tested. Functional genetic analysis and structural modeling of gyrB suggest that M330I, V340L, R485C, D500A, D533A, A543T, A543V and T546M mutations are not sufficient to confer resistance as determined by agar proportion. Only three mutations, N538D, E540V and R485C+T539N, conferred resistance to all four fluoroquinolones in at least one genetic background. The D500H and D500N mutations conferred resistance only to levofloxacin and ofloxacin while N538K and E540D consistently conferred resistance to moxifloxacin only. Transductants and clinical isolates harboring T539N, T539P or N538T+T546M mutations exhibited low-level resistance to moxifloxacin only but not consistently. These findings indicate that certain mutations in gyrB confer fluoroquinolone resistance, but the level and pattern of resistance varies among the different mutations. The results from this study provide support for the inclusion of the QRDR of gyrB in molecular assays used to detect fluoroquinolone resistance in M. tuberculosis

    Vygotsky in English: What Still Needs to Be Done

    Get PDF
    At present readers of English have still limited access to Vygotsky’s writings. Existing translations are marred by mistakes and outright falsifications. Analyses of Vygotsky’s work tend to downplay the collaborative and experimental nature of his research. Several suggestions are made to improve this situation. New translations are certainly needed and new analyses should pay attention to the contextual nature of Vygotsky’s thinking and research practice

    Detection of Atherosclerotic Inflammation by 68^{68}Ga-DOTATATE PET Compared to [18^{18}F]FDG PET Imaging

    Get PDF
    Background\textbf{Background} Inflammation drives atherosclerotic plaque rupture. Although inflammation can be measured using fluorine-18-labeled fluorodeoxyglucose positron emission tomography ([18^{18}F]FDG PET), [18^{18}F]FDG lacks cell specificity, and coronary imaging is unreliable because of myocardial spillover. Objectives\textbf{Objectives} Objectives This study tested the efficacy of gallium-68-labeled DOTATATE (68^{68}Ga-DOTATATE), a somatostatin receptor subtype-2 (SST2)-binding PET tracer, for imaging atherosclerotic inflammation. Methods\textbf{Methods} We confirmed 68^{68}Ga-DOTATATE binding in macrophages and excised carotid plaques. 68^{68}Ga-DOTATATE PET imaging was compared to [18^{18}F]FDG PET imaging in 42 patients with atherosclerosis. Results\textbf{Results} Target SSTR2\textit{SSTR2} gene expression occurred exclusively in “proinflammatory” M1 macrophages, specific 68^{68}Ga-DOTATATE ligand binding to SST2_{2} receptors occurred in CD68-positive macrophage-rich carotid plaque regions, and carotid SSTR2\textit{SSTR2} mRNA was highly correlated with in vivo 68^{68}Ga-DOTATATE PET signals (r = 0.89; 95% confidence interval [CI]: 0.28 to 0.99; p = 0.02). 68^{68}Ga-DOTATATE mean of maximum tissue-to-blood ratios (mTBRmax_{max}) correctly identified culprit versus nonculprit arteries in patients with acute coronary syndrome (median difference: 0.69; interquartile range [IQR]: 0.22 to 1.15; p = 0.008) and transient ischemic attack/stroke (median difference: 0.13; IQR: 0.07 to 0.32; p = 0.003). 68^{68}Ga-DOTATATE mTBRmax_{max} predicted high-risk coronary computed tomography features (receiver operating characteristics area under the curve [ROC AUC]: 0.86; 95% CI: 0.80 to 0.92; p < 0.0001), and correlated with Framingham risk score (r = 0.53; 95% CI: 0.32 to 0.69; p <0.0001) and [18^{18}F]FDG uptake (r = 0.73; 95% CI: 0.64 to 0.81; p < 0.0001). [18^{18}F]FDG mTBRmax_{max} differentiated culprit from nonculprit carotid lesions (median difference: 0.12; IQR: 0.0 to 0.23; p = 0.008) and high-risk from lower-risk coronary arteries (ROC AUC: 0.76; 95% CI: 0.62 to 0.91; p = 0.002); however, myocardial [18^{18}F]FDG spillover rendered coronary [18^{18}F]FDG scans uninterpretable in 27 patients (64%). Coronary 68^{68}Ga-DOTATATE PET scans were readable in all patients. Conclusions\textbf{Conclusions} We validated 68^{68}Ga-DOTATATE PET as a novel marker of atherosclerotic inflammation and confirmed that 68^{68}Ga-DOTATATE offers superior coronary imaging, excellent macrophage specificity, and better power to discriminate high-risk versus low-risk coronary lesions than [18^{18}F]FDG. (Vascular Inflammation Imaging Using Somatostatin Receptor Positron Emission Tomography [VISION]; NCT02021188)This study was funded by the Wellcome Trust and supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and the Cambridge Clinical Trials Unit. Dr. Tarkin is supported by a Wellcome Trust research training fellowship (104492/Z/14/Z). Dr. Evans is supported by a Dunhill Medical Trust fellowship (RTF44/0114). Dr. Chowdhury is supported by Royal College of Surgeons of England and British Heart Foundation (BHF) fellowships (FS/16/29/31957). Drs. Manavaki and Warburton are supported by the NIHR Biomedical Research Centres. Drs. Yu and Frontini are supported by the BHF (RE/13/6/30180). Dr. Fryer is supported by Higher Education Funding Council for England (HEFCE). Dr. Groves is supported by the University College London Hospital NIHR Biomedical Research Centre; and has received grant support from GlaxoSmithKline. Dr. Ouwehand’s laboratory is funded by EU-FP7 project Blueprint (Health-F5-2011-282510), BHF (PG-0310-1002 and RG/09/12/28096), and National Health Service Blood and Transplant. Dr. Bennett is supported by NIHR and BHF. Dr. Davenport is supported by research grants from Wellcome Trust (107715/Z/15/Z), Medical Research Council (MC_PC_14116), and BHF (RE-13-6-3180). Dr. Rudd is supported by the NIHR, BHF, Wellcome Trust, and HEFCE

    The Evolution of Invasiveness in Garden Ants

    Get PDF
    It is unclear why some species become successful invaders whilst others fail, and whether invasive success depends on pre-adaptations already present in the native range or on characters evolving de-novo after introduction. Ants are among the worst invasive pests, with Lasius neglectus and its rapid spread through Europe and Asia as the most recent example of a pest ant that may become a global problem. Here, we present the first integrated study on behavior, morphology, population genetics, chemical recognition and parasite load of L. neglectus and its non-invasive sister species L. turcicus. We find that L. neglectus expresses the same supercolonial syndrome as other invasive ants, a social system that is characterized by mating without dispersal and large networks of cooperating nests rather than smaller mutually hostile colonies. We conclude that the invasive success of L. neglectus relies on a combination of parasite-release following introduction and pre-adaptations in mating system, body-size, queen number and recognition efficiency that evolved long before introduction. Our results challenge the notion that supercolonial organization is an inevitable consequence of low genetic variation for chemical recognition cues in small invasive founder populations. We infer that low variation and limited volatility in cuticular hydrocarbon profiles already existed in the native range in combination with low dispersal and a highly viscous population structure. Human transport to relatively disturbed urban areas thus became the decisive factor to induce parasite release, a well established general promoter of invasiveness in non-social animals and plants, but understudied in invasive social insects

    Pyrosequencing-Based Comparative Genome Analysis of Vibrio vulnificus Environmental Isolates

    Get PDF
    Between 1996 and 2006, the US Centers for Disease Control reported that the only category of food-borne infections increasing in frequency were those caused by members of the genus Vibrio. The Gram-negative bacterium Vibrio vulnificus is a ubiquitous inhabitant of estuarine waters, and is the number one cause of seafood-related deaths in the US. Many V. vulnificus isolates have been studied, and it has been shown that two genetically distinct subtypes, distinguished by 16S rDNA and other gene polymorphisms, are associated predominantly with either environmental or clinical isolation. While local genetic differences between the subtypes have been probed, only the genomes of clinical isolates have so far been completely sequenced. In order to better understand V. vulnificus as an agent of disease and to identify the molecular components of its virulence mechanisms, we have completed whole genome shotgun sequencing of three diverse environmental genotypes using a pyrosequencing approach. V. vulnificus strain JY1305 was sequenced to a depth of 33×, and strains E64MW and JY1701 were sequenced to lesser depth, covering approximately 99.9% of each genome. We have performed a comparative analysis of these sequences against the previously published sequences of three V. vulnificus clinical isolates. We find that the genome of V. vulnificus is dynamic, with 1.27% of genes in the C-genotype genomes not found in the E- genotype genomes. We identified key genes that differentiate between the genomes of the clinical and environmental genotypes. 167 genes were found to be specifically associated with environmental genotypes and 278 genes with clinical genotypes. Genes specific to the clinical strains include components of sialic acid catabolism, mannitol fermentation, and a component of a Type IV secretory pathway VirB4, as well as several other genes with potential significance for human virulence. Genes specific to environmental strains included several that may have implications for the balance between self-preservation under stress and nutritional competence

    A standardised method for interpreting the association between mutations and phenotypic drug resistance inMycobacterium tuberculosis

    Get PDF
    A clear understanding of the genetic basis of antibiotic resistance in Mycobacterium tuberculosis is required to accelerate the development of rapid drug susceptibility testing methods based on genetic sequence. Raw genotype–phenotype correlation data were extracted as part of a comprehensive systematic review to develop a standardised analytical approach for interpreting resistance associated mutations for rifampicin, isoniazid, ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, streptomycin, ethionamide/prothionamide and pyrazinamide. Mutation frequencies in resistant and susceptible isolates were calculated, together with novel statistical measures to classify mutations as high, moderate, minimal or indeterminate confidence for predicting resistance. We identified 286 confidence-graded mutations associated with resistance. Compared to phenotypic methods, sensitivity (95% CI) for rifampicin was 90.3% (89.6–90.9%), while for isoniazid it was 78.2% (77.4–79.0%) and their specificities were 96.3% (95.7–96.8%) and 94.4% (93.1–95.5%), respectively. For second-line drugs, sensitivity varied from 67.4% (64.1–70.6%) for capreomycin to 88.2% (85.1–90.9%) for moxifloxacin, with specificity ranging from 90.0% (87.1–92.5%) for moxifloxacin to 99.5% (99.0–99.8%) for amikacin. This study provides a standardised and comprehensive approach for the interpretation of mutations as predictors of M. tuberculosis drug-resistant phenotypes. These data have implications for the clinical interpretation of molecular diagnostics and next-generation sequencing as well as efficient individualised therapy for patients with drug-resistant tuberculosis

    GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions

    Get PDF
    YesDrug resistance diagnostics that rely on the detection of resistance-related mutations could expedite patient care and TB eradication. We perform minimum inhibitory concentration testing for 12 anti-TB drugs together with Illumina whole-genome sequencing on 1452 clinical Mycobacterium tuberculosis (MTB) isolates. We evaluate genome-wide associations between mutations in MTB genes or non-coding regions and resistance, followed by validation in an independent data set of 792 patient isolates. We confirm associations at 13 non-canonical loci, with two involving non-coding regions. Promoter mutations are measured to have smaller average effects on resistance than gene body mutations. We estimate the heritability of the resistance phenotype to 11 anti-TB drugs and identify a lower than expected contribution from known resistance genes. This study highlights the complexity of the genomic mechanisms associated with the MTB resistance phenotype, including the relatively large number of potentially causal loci, and emphasizes the contribution of the non-coding portion of the genome.Biomedical research grant from the American Lung Association (PI MF, RG-270912-N), a K01 award from the BD2K initiative (PI MF, ES026835), and an NIAID U19 CETR grant (P.I. M.M., AI109755), the Belgian Science Policy (Belspo) (L.R., C.J.M.)

    Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing

    Get PDF
    Background: The World Health Organization recommends drug-susceptibility testing of Mycobacterium tuberculosis complex for all patients with tuberculosis to guide treatment decisions and improve outcomes. Whether DNA sequencing can be used to accurately predict profiles of susceptibility to first-line antituberculosis drugs has not been clear. Methods: We obtained whole-genome sequences and associated phenotypes of resistance or susceptibility to the first-line antituberculosis drugs isoniazid, rifampin, ethambutol, and pyrazinamide for isolates from 16 countries across six continents. For each isolate, mutations associated with drug resistance and drug susceptibility were identified across nine genes, and individual phenotypes were predicted unless mutations of unknown association were also present. To identify how whole-genome sequencing might direct first-line drug therapy, complete susceptibility profiles were predicted. These profiles were predicted to be susceptible to all four drugs (i.e., pansusceptible) if they were predicted to be susceptible to isoniazid and to the other drugs or if they contained mutations of unknown association in genes that affect susceptibility to the other drugs. We simulated the way in which the negative predictive value changed with the prevalence of drug resistance. Results: A total of 10,209 isolates were analyzed. The largest proportion of phenotypes was predicted for rifampin (9660 [95.4%] of 10,130) and the smallest was predicted for ethambutol (8794 [89.8%] of 9794). Resistance to isoniazid, rifampin, ethambutol, and pyrazinamide was correctly predicted with 97.1%, 97.5%, 94.6%, and 91.3% sensitivity, respectively, and susceptibility to these drugs was correctly predicted with 99.0%, 98.8%, 93.6%, and 96.8% specificity. Of the 7516 isolates with complete phenotypic drug-susceptibility profiles, 5865 (78.0%) had complete genotypic predictions, among which 5250 profiles (89.5%) were correctly predicted. Among the 4037 phenotypic profiles that were predicted to be pansusceptible, 3952 (97.9%) were correctly predicted. Conclusions: Genotypic predictions of the susceptibility of M. tuberculosis to first-line drugs were found to be correlated with phenotypic susceptibility to these drugs. (Funded by the Bill and Melinda Gates Foundation and others.

    ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits

    Get PDF
    corecore