255 research outputs found

    Processing blur of conflicting stimuli during the latency and onset of accommodation

    Get PDF
    The accommodative response (AR) to changes in dioptric accommodative stimulus (AS) during the latency period and onset of accommodation was investigated. Participants monocularly observed one period of a square wave in AS, with a 2-D baseline and mean, and amplitude 1 D or 2 D; the period of the square wave ranged from 0.10 s to 1.00 s; both increases and decreases were used for the first step in AS. At periods of 0.30 s and longer, accommodation was found to respond to both levels of the stimulus. Rapid retinal monitoring appeared to be taking place for such stimuli. The amplitudes of peaks in AR did not usually depend on whether a particular level of AS occurred first or second, but for 8/40 conditions, a significant difference was found, with a stronger response when the level of AS occurred second. Null or incorrect responses were also observed in many trials, possibly linked with the natural microfluctuations of accommodation. Minimum response times to the changes in AS were observed, which increased with decreasing period of the AS. The time interval between peaks in the AR decreased with decreasing period of the AS. The findings were consistent with a parallel processing model previously proposed for saccades, where input from a later change in stimulus may enter an element of the control system when that element has finished processing an earlier change. More than one change in stimulus may therefore be passing through the multi-element control system at a time

    Tidal Dwarf Galaxies at Intermediate Redshifts

    Full text link
    We present the first attempt at measuring the production rate of tidal dwarf galaxies (TDGs) and estimating their contribution to the overall dwarf population. Using HST/ACS deep imaging data from GOODS and GEMS surveys in conjunction with photometric redshifts from COMBO-17 survey, we performed a morphological analysis for a sample of merging/interacting galaxies in the Extended Chandra Deep Field South and identified tidal dwarf candidates in the rest-frame optical bands. We estimated a production rate about 1.4 {\times} 10^{-5} per Gyr per comoving volume for long-lived TDGs with stellar mass 3 {\times} 10^{8-9} solar mass at 0.5<z<1.1. Together with galaxy merger rates and TDG survival rate from the literature, our results suggest that only a marginal fraction (less than 10%) of dwarf galaxies in the local universe could be tidally-originated. TDGs in our sample are on average bluer than their host galaxies in the optical. Stellar population modelling of optical to near-infrared spectral energy distributions (SEDs) for two TDGs favors a burst component with age 400/200 Myr and stellar mass 40%/26% of the total, indicating that a young stellar population newly formed in TDGs. This is consistent with the episodic star formation histories found for nearby TDGs.Comment: 9 pages, 5 figures, Accepted for publication in Astrophysics & Space Scienc

    Field intercomparison of the gas/particle partitioning of oxygenated organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013

    Get PDF
    We present results of the first intercomparison of real-time instruments for gas/particle partitioning of organic species. Four recently-developed instruments that directly measure gas/particle partitioning in near-real time were deployed in Centreville, Alabama during the Southern Oxidant Aerosol Study (SOAS) in 2013. Two instruments were filter inlet for gases and aerosols high-resolution chemical ionization mass spectrometers (FIGAERO-HRToF-CIMS) with acetate (A-CIMS) and iodide (I-CIMS) ionization sources, respectively; the third was a semi-volatile thermal desorption aerosol GC-MS (SV-TAG); and the fourth was a high-resolution thermal desorption proton-transfer reaction mass spectrometer (HR-TD-PTRMS). Signals from these instruments corresponding to several organic acids were chosen for comparison. The campaign average partitioning fractions show good correlation. A similar level of agreement with partitioning theory is observed. Thus the intercomparison exercise shows promise for these new measurements, as well as some confidence on the measurement of low versus high particle-phase fractions. However, detailed comparison show several systematic differences that lie beyond estimated measurement errors. These differences may be due to at least eight different effects: (1) underestimation of uncertainties under low signal-to-noise; (2) inlet and/or instrument adsorption/desorption of gases; (3) differences in particle size ranges sampled; (4) differences in the methods used to quantify instrument backgrounds; (5) errors in high-resolution fitting of overlapping ion groups; (6) differences in the species included in each measurement due to different instrument sensitivities; and differences in (7) negative or (8) positive thermal decomposition (or ion fragmentation) artifacts. The available data are insufficient to conclusively identify the reasons, but evidence from these instruments and available data from an ion mobility spectrometer shows the particular importance of effects 6–8 in several cases. This comparison highlights the difficulty of this measurement and its interpretation in a complex ambient environment, and the need for further improvements in measurement methodologies, including isomer separation, and detailed study of the possible factors leading to the observed differences. Further intercomparisons under controlled laboratory and field conditions are strongly recommended

    Mixed marriages and transnational families in the intercultural context : a case study of African-Spanish couples in Catalonia, Spain

    Get PDF
    Premi a l'excel·lència investigadora. Àmbit de les Ciències Socials. 2008One of the consequences of international migration and the permanent settlement of immigrants in southern EU countries is the growing number of inter-country marriages and the formation of transnational families. Using both quantitative and qualitative data, this article examines patterns of endogamy and exogamy (i.e. marriage within/outside a particular group or category) among African immigrants in Catalonia, focusing on bi-national Senegalese- and Gambian-Spanish couples. Socio-demographic profiles, transnationality, the dynamics of cultural change or retention, and the formation of transcultural identities are explored. The evidence presented suggests that social-class factors are more important than cultural origins in patterns of endogamy and exogamy, in the dynamics of living together and in the bringing-up of children of mixed unions. Such a conclusion negates culturalists' explanations of endogamy and exogamy while, at the same time, emphasising the role of social actors as active subjects in these processes. I further argue that mixed couples and their offspring deal-to a greater or lesser extent-with multiple localisations and cultural backgrounds (i.e. here and there), rather than experiencing a 'clash between two cultures'. Therefore, it would be a mistake to pretend that multicultural links do not exist and that they cannot be revitalised and functional. The paper starts and ends by addressing the complexities of processes of interculturalism, resisting an interpretation of hybridity and segregation as contradictory or exclusive realities

    Synchronous communication in PLM environments using annotated CAD models

    Full text link
    The connection of resources, data, and knowledge through communication technology plays a vital role in current collaborative design methodologies and Product Lifecycle Management (PLM) systems, as these elements act as channels for information and meaning. Despite significant advances in the area of PLM, most communication tools are used as separate services that are disconnected from existing development environments. Consequently, during a communication session, the specific elements being discussed are usually not linked to the context of the discussion, which may result in important information getting lost or becoming difficult to access. In this paper, we present a method to add synchronous communication functionality to a PLM system based on annotated information embedded in the CAD model. This approach provides users a communication channel that is built directly into the CAD interface and is valuable when individuals need to be contacted regarding the annotated aspects of a CAD model. We present the architecture of a new system and its integration with existing PLM systems, and describe the implementation details of an annotation-based video conferencing module for a commercial CAD application.This work was supported by the Spanish Ministry of Economy and Competitiveness and the FEDER Funds, through the ANNOTA project (Ref. TIN2013-46036-C3-1-R).Camba, JD.; Contero, M.; Salvador Herranz, GM.; Plumed, R. (2016). Synchronous communication in PLM environments using annotated CAD models. Journal of Systems Science and Systems Engineering. 25(2):142-158. https://doi.org/10.1007/s11518-016-5305-5S142158252Abrahamson, S., Wallace, D., Senin, N. & Sferro, P. (2000). Integrated design in a service marketplace. Computer-Aided Design, 32(2):97–107.Ahmed, S. (2005). Encouraging reuse of design knowledge: a method to index knowledge. Design Studies, 26:565–592.Alavi, M. & Tiwana, A (2002). Knowledge integration in virtual teams: the potential role of KMS. Journal of the American Society for Information Science and Technology, 53:1029–1037.Ameri, F. & Dutta, D. (2005). Product lifecycle management: closing the knowledge loops. Computer-Aided Design and Applications, 2(5):577–590.Anderson, A.H., Smallwood, L., MacDonald, R., Mullin, J., Fleming, A. & O'Malley, C. (2000). Video data and video links in mediated communication: what do users value? International Journal of Human-Computer Studies, 52(1):165–187.Arias, E., Eden, H., Fischer, G., Gorman, A. & Scharff, E. (2000). Transcending the individual human mind–creating shared understanding through collaborative design. ACM Transactions on Computer-Human Interaction (TOCHI) 7(1): 84–113.Barley, W.C., Leonardi, P.M., & Bailey, D.E. (2012). Engineering objects for collaboration: strategies of ambiguity and clarity at knowledge boundaries. Human Communication Research, 38:280–308.Boujut, J.F. & Dugdale, J. (2006). Design of a 3D annotation tool for supporting evaluation activities in engineering design. Cooperative Systems Design, COOP 6:1–8.Camba, J., Contero, M., Johnson, M. & Company, P. (2014). Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability. Computer-Aided Design, 57:61–73.Camba, J., Contero, M. & Salvador-Herranz, G. (2014). Speak with the annotator: promoting interaction in a knowledge-based CAD environment built on the extended annotation concept. Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 196–201.Chudoba, K.M., Wynn, E., Lu, M. & Watson-Manheim, M.B. (2005). How virtual are we? Measuring virtuality and understanding its impact in a global organization. Information Systems Journal, 15(4):279–306.Danesi, F., Gardan, N. & Gardan, Y. (2006). Collaborative Design: from Concept to Application. Geometric Modeling and Imaging—New Trends, 90–96.Durstewitz, M., Kiefner, B., Kueke, R., Putkonen, H., Repo, P. & Tuikka, T. (2002). Virtual collaboration environment for aircraft design. Proceedings of the IEEE 6th International Conference on Information Visualisation, 502–507.Fisher, D., Brush, A.J., Gleave, E. & Smith, M.A. (2006). Revisiting Whittaker and Sidner’s email overload ten years later. Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work. ACM, BanffFonseca, M.J., Henriques, E., Silva, N., Cardoso, T. & Jorge, J.A. (2006). A collaborative CAD conference tool to support mobile engineering. Rapid Product Development (RPD’06), Marinha Grande, Portugal.Frechette, S.P. (2011). Model based enterprise for manufacturing. Proceedings of the 44th CIRP International Conference on Manufacturing Systems.Fu, W.X., Bian, J. & Xu, Y.M. (2013). A video conferencing system for collaborative engineering design. Applied Mechanics and Materials, 344:246–252.Fuh, J.Y.H. & Li, W.D. (2005). Advances in collaborative CAD: the-state-of-the art. Computer-Aided Design, 37:571–581.Fussell, S.R., Kraut, R.E. & Siegel, J. (2000). Coordination of communication: effects of shared visual context on collaborative work. Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, 21–30.Gajewska, H., Kistler, J., Manasse, M.S. & Redell, D. (1994). Argo: a system for distributed collaboration. Proceedings of the ACM Second International Conference on Multimedia, San Francisco, CA, USA. 433–440.Gantz, J., Reinsel, D., Chute, C., Schlichting, W., Mcarthur, J., Minton, S., Xheneti, I., Toncheva, A. & Manfrediz, A. (2007). The expanding digital universe: a forecast of worldwide information growth through 2010. IDC, Massachusetts.Gowan, Jr. J.A. & Downs, J.M. (1994). Video conferencing human-machine interface: a field study. Information and Management, 27(6):341–356.Gupta, A., Mattarelli, E., Seshasai, S. & Broschak, J. (2009). Use of collaborative technologies and knowledge sharing in co-located and distributed teams: towards the 24-h knowledge factory. The Journal of Strategic Information Systems, 18:147–161.Hickson, I. (2009). The Web Socket Protocol IETF, Standards Track.Hong, J., Toye, G. & Leifer, L.J. (1996). Engineering design notebook for sharing and reuse. Computers in Industry, 29:27–35.Isaacs, E.A. & Tang, J.C. (1994). What video can and cannot do for collaboration: a case study. Multimedia Systems, 2(2):63–73.Karsenty, L. (1999). Cooperative work and shared visual context: an empirical study of comprehension problems in side-by-side and remote help dialogues. Human Computer Interaction, 14(3): 283–315.Lahti, H., Seitamaa-Hakkarainen, P. & Hakkarainen, K. (2004). Collaboration patterns in computer supported collaborative designing. Design Studies, 25:351–371.Leenders, R.T.A., Van Engelen, J.M. & Kratzer, J. (2003). Virtuality, communication, and new product team creativity: a social network perspective. Journal of Engineering and Technology Management, 20(1):69–92.Levitt, R.E., Jin, Y. & Dym, C.L. (1991). Knowledge-based support for management of concurrent, multidisciplinary design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 5(2):77–95.Li, C., McMahon, C. & Newnes, L. (2009). Annotation in product lifecycle management: a review of approaches. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009. Vol. 2. New York: ASME, 797–806.Li, W.D., Lu, W.F., Fuh, J.Y. & Wong, Y.S. (2005). Collaborative computer-aided design-research and development status. Computer-Aided Design, 37(9):931–940.Londono, F., Cleetus, K.J., Nichols, D.M., Iyer, S., Karandikar, H.M., Reddy, S.M., Potnis, S.M., Massey, B., Reddy, A. & Ganti, V. (1992). Coordinating a virtual team. CERC-TR-RN-92-005, Concurrent Engineering Research Centre, West Virginia University, West Virginia.Lubell, J., Chen, K., Horst, J., Frechette, S., & Huang, P. (2012). Model based enterprise/technical data package summit report. NIST Technical Note, 1753.May, A. & Carter, C. (2001). A case study of virtual team working in the European automotive industry. International Journal of Industrial Ergonomics, 27(3):171–186.Olson, J.S., Olson, G.M. & Meader, D.K. (1995). What mix of video and audio is useful for small groups doing remote real-time design work? Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, Addison-Wesley Publishing Co.Ping-Hung, H., Mishra, C.S. & Gobeli, D.H. (2003). The return on R&D versus capital expenditures in pharmaceutical and chemical industries. IEEE Transactions on Engineering Management, 50:141–150.Sharma, A. (2005). Collaborative product innovation: integrating elements of CPI via PLM framework. Computer-Aided Design, 37(13):1425–1434.Shum, S.J.B., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B. & Nuseibeh, B. (2006). Hypermedia support for argumentation-based rationale: 15 Years on from Gibis and Qoc. Rationale Management in Software Engineering, 111–132.Siltanen, P. & Valli, S. (2013). Web-based 3D Mediated Communication in Manufacturing Industry. Concurrent Engineering Approaches for Sustainable Product Development in a Multidisciplinary Environment, 1181–1192. Springer London.Stark, J. (2011). Product Lifecycle Management. 1–16. Springer London.Tavcar, J., Potocnik, U. & Duhovnik, J. (2013). PLM used as a backbone for concurrent engineering in supply chain. Concurrent Engineering Approaches for Sustainable Product Development in a Multi-Disciplinary Environment, 681–692.Tay, F.E.H. & Ming, C. (2001). A shared multi-media design environment for concurrent engineering over the internet. Concurrent Engineering, 9(1):55–63.Tay, F.E.H. & Roy, A. (2003). CyberCAD: a collaborative approach in 3D-CAD technology in a multimedia-supported environment. Computers in Industry, 52(2):127–145.Toussaint, J. & Cheng, K. (2002). Design agility and manufacturing responsiveness on the web. Integrated Manufacturing Systems, 13(5):328–339.Tsoi, K.N. & Rahman, S.M. (1996). Media-on-demand multimedia electronic mail: a tool for collaboration on the web. Proceedings of the 5th IEEE International Symposium on High Performance Distributed Computing.Upton, D.M. & Mcafee, A. (1999). The Real Virtual Factory. Harvard Business School Press, 69–89.Vila, C., Estruch, A., Siller, H.R., Abellán, J.V. & Romero, F. (2007). Workflow methodology for collaborative design and manufacturing. Cooperative Design, Visualization, and Engineering 42–49, Springer Berlin Heidelberg.Wasiak, J., Hicks, B., Newnes, L., Dong, A., & Burrow, L. (2010). Understanding engineering email: the development of a taxonomy for identifying and classifying engineering work. Research in Engineering Design, 21(1):43–64.Wasko, M.M. & Faraj, S. (2005). Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly: Management Information Systems, 29:35–57.Yang, Q.Z., Zhang, Y., Miao, C.Y. & Shen, Z.Q. (2008). Semantic annotation of digital engineering resources for multidisciplinary design collaboration. ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 617–624. American Society of Mechanical Engineers.You, C.F. & Chao, S.N. (2006). Multilayer architecture in collaborative environment. Concurrent Engineering Research and Applications, 14(4):273–281.Yuan, Y.C., Fulk, J., Monge, P.R. & Contractor, N. (2010). Expertise directory development, shared task interdependence, and strength of communication network ties as multilevel predictors of expertise exchange in transactive memory work groups. Communication Research, 37: 20–47

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams
    corecore