280 research outputs found
Effect of different crops on the cuticle length, weight and total body weight of Kraussaria angulifera (krauss) in Sahel and Sudan Savanna Zones of Borno State, Nigeria
The experiment was conducted in a screen house in Jere (130 9N, 110 4E) and Maiduguri (120 8N, 120 5E) of Borno State in 2015 to evaluate the effects of different crops on the cuticle and body weight of Kraussaria angulifera (Krauss) in the Sahel and Sudan Savanna zones. The experiment was laid in a completely randomized block design. Experimental cage of 6˟4.5˟1m, was divided into 6 compartments of 1x1.5x1m planted to 6 crop treatments of maize, sorghum, millet, maize and sorghum, sorghum and millet, millet and maize and replicated 3 times. Seven day old F1 nymphs were introduced into each compartment. Data collection was done every week for the above variables. The results obtained in the two zones revealed that nymphs fed on millet had the longest (36.17) mean length of cuticle at instar five when compared to the other treatments. Nymphs fed on maize had the least (33.17) mean length of cuticle. The weight of cuticle also showed that nymphs fed on millet had the highest (0.065g) weight of cuticle while nymphs fed on maize had the least (0.063g). Data on total body weight showed that nymphs fed on crop mixture from nymph IV to adult recorded the highest total weight than those fed on sole crop.Keywords: Cereal crops, Kraussaria angulifera (Krauss), Sahel and Savannah, nymphs, adults, cuticle, and weigh
Mid-infrared luminous quasars in the GOODS–Herschel fields: a large population of heavily obscured, Compton-thick quasars at z ≈ 2
We present the infrared (IR) and X-ray properties of a sample of 33 mid-IR luminous quasars (νL6 μm ≥ 6 × 1044 erg s−1) at redshift z ≈ 1–3, identified through detailed spectral energy distribution analyses of distant star-forming galaxies, using the deepest IR data from Spitzer and Herschel in the GOODS–Herschel fields. The aim is to constrain the fraction of obscured, and Compton-thick (CT, NH > 1.5 × 1024 cm−2) quasars at the peak era of nuclear and star formation activities. Despite being very bright in the mid-IR band, ≈30 per cent of these quasars are not detected in the extremely deep 2 and 4 Ms Chandra X-ray data available in these fields. X-ray spectral analysis of the detected sources reveals that the majority (≈67 per cent) are obscured by column densities NH > 1022 cm−2; this fraction reaches ≈80 per cent when including the X-ray-undetected sources (9 out of 33), which are likely to be the most heavily obscured, CT quasars. We constrain the fraction of CT quasars in our sample to be ≈24–48 per cent, and their space density to be Φ = (6.7 ± 2.2) × 10−6 Mpc−3. From the investigation of the quasar host galaxies in terms of star formation rates (SFRs) and morphological distortions, as a sign of galaxy mergers/interactions, we do not find any direct relation between SFRs and quasar luminosity or X-ray obscuration. On the other hand, there is tentative evidence that the most heavily obscured quasars have, on average, more disturbed morphologies than the unobscured/moderately obscured quasar hosts, which preferentially live in undisturbed systems. However, the fraction of quasars with disturbed morphology amongst the whole sample is ≈40 per cent, suggesting that galaxy mergers are not the main fuelling mechanism of quasars at z ≈ 2
Finite covers of random 3-manifolds
A 3-manifold is Haken if it contains a topologically essential surface. The
Virtual Haken Conjecture posits that every irreducible 3-manifold with infinite
fundamental group has a finite cover which is Haken. In this paper, we study
random 3-manifolds and their finite covers in an attempt to shed light on this
difficult question. In particular, we consider random Heegaard splittings by
gluing two handlebodies by the result of a random walk in the mapping class
group of a surface. For this model of random 3-manifold, we are able to compute
the probabilities that the resulting manifolds have finite covers of particular
kinds. Our results contrast with the analogous probabilities for groups coming
from random balanced presentations, giving quantitative theorems to the effect
that 3-manifold groups have many more finite quotients than random groups. The
next natural question is whether these covers have positive betti number. For
abelian covers of a fixed type over 3-manifolds of Heegaard genus 2, we show
that the probability of positive betti number is 0.
In fact, many of these questions boil down to questions about the mapping
class group. We are lead to consider the action of mapping class group of a
surface S on the set of quotients pi_1(S) -> Q. If Q is a simple group, we show
that if the genus of S is large, then this action is very mixing. In
particular, the action factors through the alternating group of each orbit.
This is analogous to Goldman's theorem that the action of the mapping class
group on the SU(2) character variety is ergodic.Comment: 60 pages; v2: minor changes. v3: minor changes; final versio
ALMA and Herschel reveal that AGN and main-sequence galaxies have different star formation rate distributions
Using deep Herschel and ALMA observations, we investigate the star formation rate (SFR) distributions of X-ray AGN host galaxies at 0.5<z<1.5 and 1.5<z<4, comparing them to that of normal, star-forming (i.e., "main-sequence", or MS) galaxies. We find 34-55 per cent of AGNs have SFRs at least a factor of two below that of the average MS galaxy, compared to ~15 per cent of all MS galaxies, suggesting significantly different SFR distributions. Indeed, when both are modelled as log-normal distributions, the mass and redshift-normalised SFR distributions of AGNs are roughly twice as broad, and peak ~0.4 dex lower, than that of MS galaxies. However, like MS galaxies, the normalised SFR distribution of AGNs appears not to evolve with redshift. Despite AGNs and MS galaxies having different SFR distributions, the linear-mean SFR of AGNs derived from our distributions is remarkably consistent with that of MS galaxies, and thus with previous results derived from stacked Herschel data. This apparent contradiction is due to the linear-mean SFR being biased by bright outliers, and thus does not necessarily represent a true characterisation of the typical SFR of AGNs
Genomic Deletion Marking an Emerging Subclone of Francisella tularensis subsp. holarctica in France and the Iberian Peninsula
P. 7465-7470Francisella tularensis subsp. holarctica is widely disseminated in North America and the boreal and temperate
regions of the Eurasian continent. Comparative genomic analyses identified a 1.59-kb genomic deletion specific
to F. tularensis subsp. holarctica isolates from Spain and France. Phylogenetic analysis of strains carrying this
deletion by multiple-locus variable-number tandem repeat analysis showed that the strains comprise a highly
related set of genotypes, implying that these strains were recently introduced or recently emerged by clonal
expansion in France and the Iberian PeninsulaS
On the Behavior of the Effective QCD Coupling alpha_tau(s) at Low Scales
The hadronic decays of the tau lepton can be used to determine the effective
charge alpha_tau(m^2_tau') for a hypothetical tau-lepton with mass in the range
0 < m_tau' < m_tau. This definition provides a fundamental definition of the
QCD coupling at low mass scales. We study the behavior of alpha_tau at low mass
scales directly from first principles and without any renormalization-scheme
dependence by looking at the experimental data from the OPAL Collaboration. The
results are consistent with the freezing of the physical coupling at mass
scales s = m^2_tau' of order 1 GeV^2 with a magnitude alpha_tau ~ 0.9 +/- 0.1.Comment: 15 pages, 4 figures, submitted to Physical Review D, added
references, some text added, no results nor figures change
The Alvarez impact theory of mass extinction; limits to its applicability and the „great expectations syndrome”
For the past three decades, the Alvarez impact theory of mass extinction, causally related to catastrophic meteorite impacts, has been recurrently applied to multiple extinction boundaries. However, these multidisciplinary research efforts across the globe have been largely unsuccessful to date, with one outstanding exception: the Cretaceous-Paleogene boundary. The unicausal impact scenario as a leading explanation, when applied to the complex fossil record, has resulted in force-fitting of data and interpretations ("great expectations syndrome". The misunderstandings can be grouped at three successive levels of the testing process, and involve the unreflective application of the impact paradigm: (i) factual misidentification, i.e., an erroneous or indefinite recognition of the extraterrestrial record in sedimentological, physical and geochemical contexts, (ii) correlative misinterpretation of the adequately documented impact signals due to their incorrect dating, and (iii) causal overestimation when the proved impact characteristics are doubtful as a sufficient trigger of a contemporaneous global cosmic catastrophe. Examples of uncritical belief in the simple cause-effect scenario for the Frasnian-Famennian, Permian-Triassic, and Triassic-Jurassic (and the Eifelian-Givetian and Paleocene-Eocene as well) global events include mostly item-1 pitfalls (factual misidentification), with Ir enrichments and shocked minerals frequently misidentified. Therefore, these mass extinctions are still at the first test level, and only the F-F extinction is potentially seen in the context of item-2, the interpretative step, because of the possible causative link with the Siljan Ring crater (53 km in diameter). The erratically recognized cratering signature is often marked by large timing and size uncertainties, and item-3, the advanced causal inference, is in fact limited to clustered impacts that clearly predate major mass extinctions. The multi-impact lag-time pattern is particularly clear in the Late Triassic, when the largest (100 km diameter) Manicouagan crater was possibly concurrent with the end-Carnian extinction (or with the late Norian tetrapod turnover on an alternative time scale). The relatively small crater sizes and cratonic (crystalline rock basement) setting of these two craters further suggest the strongly insufficient extraterrestrial trigger of worldwide environmental traumas. However, to discuss the kill potential of impact events in a more robust fashion, their location and timing, vulnerability factors, especially target geology and palaeogeography in the context of associated climate-active volatile fluxes, should to be rigorously assessed. The current lack of conclusive impact evidence synchronous with most mass extinctions may still be somewhat misleading due to the predicted large set of undiscovered craters, particularly in light of the obscured record of oceanic impact events
Increasing source to image distance for AP pelvis imaging – impact on radiation dose and image quality
Aim: A quantative primary study to determine whether increasing source to image distance (SID), with
and without the use of automatic exposure control (AEC) for antero-posterior (AP) pelvis imaging, reduces
dose whilst still producing an image of diagnostic quality.
Methods: Using a computed radiography (CR) system, an anthropomorphic pelvic phantom was positioned
for an AP examination using the table bucky. SID was initially set at 110 cm, with tube potential set
at a constant 75 kVp, with two outer chambers selected and a fine focal spot of 0.6 mm. SID was then
varied from 90 cm to 140 cm with two exposures made at each 5 cm interval, one using the AEC and
another with a constant 16 mAs derived from the initial exposure. Effective dose (E) and entrance surface
dose (ESD) were calculated for each acquisition. Seven experienced observers blindly graded image
quality using a 5-point Likert scale and 2 Alternative Forced Choice software. Signal-to-Noise Ratio (SNR)
was calculated for comparison. For each acquisition, femoral head diameter was also measured for
magnification indication.
Results: Results demonstrated that when increasing SID from 110 cm to 140 cm, both E and ESD reduced
by 3.7% and 17.3% respectively when using AEC and 50.13% and 41.79% respectively, when the constant
mAs was used. No significant statistical (T-test) difference (p ¼ 0.967) between image quality was
detected when increasing SID, with an intra-observer correlation of 0.77 (95% confidence level). SNR
reduced slightly for both AEC (38%) and no AEC (36%) with increasing SID.
Conclusion: For CR, increasing SID significantly reduces both E and ESD for AP pelvis imaging without
adversely affecting image quality
- …