12 research outputs found

    Genome-wide patterns of selection in 230 ancient Eurasians

    Get PDF
    Ancient DNA makes it possible to directly witness natural selection by analyzing samples from populations before, during and after adaptation events. Here we report the first scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture whose genetic material we extracted from the DNA-rich petrous bone and who we show were members of the population that was the source of Europe’s first farmers. We also report a complete transect of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture from at least two external sources into steppe populations during this period. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height

    Mitochondrial genome diversity on the Central Siberian Plateau with particular reference to the prehistory of northernmost Eurasia.

    No full text
    The Central Siberian Plateau was the last geographic area in Eurasia to become habitable by modern humans after the Last Glacial Maximum (LGM). Through a comprehensive dataset of mitochondrial DNA (mtDNA) genomes retained in the remnats of earlier ("Old") Siberians, primarily the Ket, Tofalar, and Todzhi, we explored genetic links between the Yenisei-Sayan region and Northeast Eurasia (best represented by the Yukaghir) over the last 10,000 years. We generated 218 new complete mtDNA sequences and placed them into compound phylogenies with 7 newly obtained and 70 published ancient mitochondrial genomes. We have considerably extended the mtDNA sequence diversity (at the entire mtDNA genome level) of autochthonous Siberians, which remain poorly sampled, and these new data may have a broad impact on the study of human migration. We compared present-day mtDNA diversity in these groups with complete mitochondrial genomes from ancient samples from the region and placed the samples into combined genealogical trees. The resulting components were used to clarify the origins and expansion history of mtDNA lineages that evolved in the refugia of south-central Siberia and beyond, as well as multiple phases of connection between this region and distant parts of Eurasia

    Global diversity, population stratification, and selection of human copy-number variation

    No full text
    In order to explore the diversity and selective signatures of duplication and deletion human copy-number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single-nucleotide-variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load

    Global diversity, population stratification, and selection of human copy-number variation

    Get PDF
    In order to explore the diversity and selective signatures of duplication and deletion human copy-number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single-nucleotide-variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.This project has been funded in part with federal funds from the National Cancer Institute, NIH, under contract HHSN26120080001E. This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. This work was also partly supported by NIH grant 2R01HG002385 and a grant (11631) from the Paul G. Allen Family Foundation to E.E.E. The sequencing for this study was supported by a grant from the Simons Foundation to D.R. (SFARI 280376) and by a HOMINID grant from the NSF to D.R. (BCS-1032255). T.K. is supported by a European Research Council Starting Investigator grant (FP7 - 26213). R.S. and S.D. received support from the Ministry of Education and Science, Russian Federation (14.Z50.31.0010). H.S., E.M., R.V., and M.M. are supported by Institutional Research Funding from the Estonian Research Council IUT24-1 and by the European Regional Development Fund (European Union) through the Centre of Excellence in Genomics to Estonian Biocentre and University of Tartu. S.A.T. is supported by NIH grants 5DP1ES022577 05, 1R01DK104339-01, and 1R01GM113657-01. C.T.-S. is supported by Wellcome Trust grant 098051. C.M.B. is supported by the NSF (award numbers 0924726 and 1153911). Data are deposited into ENA (PRJEB9586 or ERP010710), and variant calls are deposited in dbVar (PRJNA285786

    The Simons Genome Diversity Project: 300 genomes from 142 diverse populations

    No full text
    Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.The sequencing was funded by the Simons Foundation (SFARI 280376) and the US National Science Foundation (BCS-1032255). I.M. was supported by a Long Term Fellowship grant LT001095/2014 from the Human Frontier Science program. P.S. was supported by the Wenner-Gren foundation and the Swedish Research Council (VR grant 2014-453). T.W. and M.G. were supported by an NIJ grant 2014-DN-BX-K089. Y.E. was supported by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and by NIJ grant 2014-DN-BX-K089. D.L. was supported by the Natural Sciences and Engineering Research Council of Canada. T.K. was supported by ERC Starting Investigator grant FP7 - 261213. R.S. received support from Russian Foundation for Basic Research (#15-04-02543). S.D. received support from the Russian Foundation for Basic Research (#16-34-00599). R.K., E.K. and S.L. were supported by the Russian Foundation for Basic Research (11-04-00725-a). E.B. was supported by the Russian Foundation for Basic Research (16-06-00303). O.B. was supported by the Russian Scientific Fund (14-04-00827) and by the Russian Foundation for Basic Research (16-04-00890). D.M.B., H.S., E.M., R.V. and M.M. were supported by Institutional Research Funding from the Estonian Research Council IUT24-1 and by the European Regional Development Fund (European Union) through the Centre of Excellence in Genomics to Estonian Biocentre and University of Tartu. D.C. was supported by the Spanish MINECO grant CGL-44351-P. L.B.J. and W.S.W. were supported by NIH grant GM59290. S.A.T. was supported by NIH grants 5DP1ES022577 05, 1R01DK104339-01, and 1R01GM113657-01. C.T.-S. and Y.X. were supported by The Wellcome Trust grant 098051. C.M.B. was supported by NSF grants 0924726 and 1153911. K.T. was supported by CSIR Network Project grant (GENESIS: BSC0121). J.P.S. and Y.S.S. were supported in part by an NIH grant R01-GM094402, and a Packard Fellowship for Science and Engineering. G.R., J.K and S.P. were funded by the Max Planck Society. N.P. and D.R. were supported by NIH grant GM100233 and D.R. is a Howard Hughes Medical Institute investigato

    Ancient human genomes suggest three ancestral populations for present-day Europeans

    No full text
    We sequenced the genomes of a ~7,000-year-old farmer from Germany and eight ~8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes ¹⁻⁴ with 2,345 contemporary humans to show thatmost present-day Europeans derive from atleast three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians³, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had 44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages

    Using remote sensing to estimate snow depth and snow water equivalence

    Get PDF
    Snow is an important source of water. However, data is often lacking on the water content (snow water equivalence - SWE), extent and depth of the seasonal snow cover. This paper presents results from a research project that determined the amount of water in a snow pack from snow depth and SWE in an areal manner using remote sensing and photogrammetry. Five field campaigns were undertaken within the Falls Creek Ski Resort, over 18 months, to establish a framework of positional points, collect snow data and acquire aerial imagery. A GPS survey was completed concurrent with the image capture of snow-covered terrain to obtain appropriate validation points of the snow surface and to coordinate photo control. Spectral reflectance measurements, supported by manual sampling of the snow surface, were collected in conjunction with snow surface GPS measurements. Digital photogrammetric methods were used to create digital elevation models (DEMs) of the snow surface and the terrain. The digital aerial photography was acquired with a ground sample distance of 8 cm. Derived DEM values have been consistently higher than GPS elevations (mean differences of 15 cm; standard deviation of 8 cm). Spectral reflectance signatures were used to infer the properties of snow, such as snow grain size. A prominent absorption feature (~1030 nm) of the snow reflectance was found to be highly correlated with grain size (R = 0.71, p <0.05) allowing for the estimation of SWE, at least for the snow surface. The potential of this methodology is to allow for the automated estimation of both snow depth and water content at a landscape scale
    corecore