671 research outputs found

    Using the Generic Synteny Browser (GBrowse_syn)

    Get PDF
    Genome Browsers are software that allow the user to view genome annotations in the context of a reference sequence, such as a chromosome, contig, scaffold, etc. The Generic Genome Browser (GBrowse) is an open-source genome browser package developed as part of the Generic Model Database Project (see UNIT ; Stein et al., 2002). The increasing number of sequenced genomes has led to a corresponding growth in the field of comparative genomics, which requires methods to view and compare multiple genomes. Using the same software framework as GBrowse, the Generic Synteny Browser (GBrowse_syn) allows the comparison of colinear regions of multiple genomes using the familiar GBrowse-style Web page. Like GBrowse, GBrowse_syn can be configured to display any organism, and is currently the synteny browser used for model organisms such as C. elegans (WormBase; http://www.wormbase.org; see UNIT 1.8) and Arabidopsis (TAIR; http://www.arabidopsis.org; see UNIT 1.1). GBrowse_syn is part of the GBrowse software package and can be downloaded from the Web and run on any Unix-like operating system, such as Linux, Solaris, or MacOS X. GBrowse_syn is still under active development. This unit will cover installation and configuration as part of the current stable version of GBrowse (v. 1.71)

    The Mitochondrial Genome of the Entomoparasitic Green Alga Helicosporidium

    Get PDF
    BACKGROUND: Helicosporidia are achlorophyllous, non-photosynthetic protists that are obligate parasites of invertebrates. Highly specialized, these pathogens feature an unusual cyst stage that dehisces inside the infected organism and releases a filamentous cell displaying surface projections, which will penetrate the host gut wall and eventually reproduce in the hemolymph. Long classified as incertae sedis or as relatives of other parasites such as Apicomplexa or Microsporidia, the Helicosporidia were surprisingly identified through molecular phylogeny as belonging to the Chlorophyta, a phylum of green algae. Most phylogenetic analyses involving Helicosporidia have placed them within the subgroup Trebouxiophyceae and further suggested a close affiliation between the Helicosporidia and the genus Prototheca. Prototheca species are also achlorophyllous and pathogenic, but they infect vertebrate hosts, inducing protothecosis in humans. The complete plastid genome of an Helicosporidium species was recently described and is a model of compaction and reduction. Here we describe the complete mitochondrial genome sequence of the same strain, Helicosporidium sp. ATCC 50920 isolated from the black fly Simulium jonesi. METHODOLOGY/PRINCIPAL FINDINGS: The circular mapping 49343 bp mitochondrial genome of Helicosporidium closely resembles that of the vertebrate parasite Prototheca wickerhamii. The two genomes share an almost identical gene complement and display a level of synteny that is higher than any other sequenced chlorophyte mitochondrial DNAs. Interestingly, the Helicosporidium mtDNA feature a trans-spliced group I intron, and a second group I intron that contains two open reading frames that appear to be degenerate maturase/endonuclease genes, both rare characteristics for this type of intron. CONCLUSIONS/SIGNIFICANCE: The architecture, genome content, and phylogeny of the Helicosporidium mitochondrial genome are all congruent with its close relationship to Prototheca within the Trebouxiophyceae. The Helicosporidium mitochondrial genome does, however, contain a number of novel features, particularly relating to its introns

    Investigating hookworm genomes by comparative analysis of two Ancylostoma species

    Get PDF
    Background Hookworms, infecting over one billion people, are the mostly closely related major human parasites to the model nematode Caenorhabditis elegans. Applying genomics techniques to these species, we analyzed 3,840 and 3,149 genes from Ancylostoma caninum and A. ceylanicum. Results Transcripts originated from libraries representing infective L3 larva, stimulated L3, arrested L3, and adults. Most genes are represented in single stages including abundant transcripts like hsp-20 in infective L3 and vit-3 in adults. Over 80% of the genes have homologs in C. elegans, and nearly 30% of these were with observable RNA interference phenotypes. Homologies were identified to nematode-specific and clade V specific gene families. To study the evolution of hookworm genes, 574 A. caninum / A. ceylanicum orthologs were identified, all of which were found to be under purifying selection with distribution ratios of nonsynonymous to synonymous amino acid substitutions similar to that reported for C. elegans / C. briggsae orthologs. The phylogenetic distance between A. caninum and A. ceylanicum is almost identical to that for C. elegans / C. briggsae. Conclusion The genes discovered should substantially accelerate research toward better understanding of the parasites' basic biology as well as new therapies including vaccines and novel anthelmintics

    Biopython: freely available Python tools for computational molecular biology and bioinformatics

    Get PDF
    Summary: The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. Availability: Biopython is freely available, with documentation and source code at www.biopython.org under the Biopython license. Contact: All queries should be directed to the Biopython mailing lists, see www.biopython.org/wiki/[email protected]

    Metagenomes in the borderline ecosystems of the Antarctic cryptoendolithic communities

    Get PDF
    Antarctic cryptoendolithic communities are microbial ecosystems dwelling inside rocks of the Antarctic desert. We present the first 18 shotgun metagenomes from these communities to further characterize their composition, biodiversity, functionality, and adaptation. Future studies will integrate taxonomic and functional annotations to examine the pathways necessary for life to evolve in the extreme

    Ten Simple Rules for Getting Help from Online Scientific Communities

    Get PDF
    The increasing complexity of research requires scientists to work at the intersection of multiple fields and to face problems for which their formal education has not prepared them. For example, biologists with no or little background in programming are now often using complex scripts to handle the results from their experiments; vice versa, programmers wishing to enter the world of bioinformatics must know about biochemistry, genetics, and other fields. In this context, communication tools such as mailing lists, web forums, and online communities acquire increasing importance. These tools permit scientists to quickly contact people skilled in a specialized field. A question posed properly to the right online scientific community can help in solving difficult problems, often faster than screening literature or writing to publication authors. The growth of active online scientific communities, such as those listed in Table S1, demonstrates how these tools are becoming an important source of support for an increasing number of researchers. Nevertheless, making proper use of these resources is not easy. Adhering to the social norms of World Wide Web communication—loosely termed “netiquette”—is both important and non-trivial. In this article, we take inspiration from our experience on Internet-shared scientific knowledge, and from similar documents such as “Asking the Questions the Smart Way” and “Getting Answers”, to provide guidelines and suggestions on how to use online communities to solve scientific problems

    webPRC: the Profile Comparer for alignment-based searching of public domain databases

    Get PDF
    Profile–profile methods are well suited to detect remote evolutionary relationships between protein families. Profile Comparer (PRC) is an existing stand-alone program for scoring and aligning hidden Markov models (HMMs), which are based on multiple sequence alignments. Since PRC compares profile HMMs instead of sequences, it can be used to find distant homologues. For this purpose, PRC is used by, for example, the CATH and Pfam-domain databases. As PRC is a profile comparer, it only reports profile HMM alignments and does not produce multiple sequence alignments. We have developed webPRC server, which makes it straightforward to search for distant homologues or similar alignments in a number of domain databases. In addition, it provides the results both as multiple sequence alignments and aligned HMMs. Furthermore, the user can view the domain annotation, evaluate the PRC hits with the Jalview multiple alignment editor and generate logos from the aligned HMMs or the aligned multiple alignments. Thus, this server assists in detecting distant homologues with PRC as well as in evaluating and using the results. The webPRC interface is available at http://www.ibi.vu.nl/programs/prcwww/

    A single fungal strain was the unexpected cause of a mass aspergillosis outbreak in the world's largest and only flightless parrot.

    Get PDF
    Kākāpō are a critically endangered species of parrots restricted to a few islands off the coast of New Zealand. Kākāpō are very closely monitored, especially during nesting seasons. In 2019, during a highly successful nesting season, an outbreak of aspergillosis affected 21 individuals and led to the deaths of 9, leaving a population of only 211 kākāpō. In monitoring this outbreak, cultures of aspergillus were grown, and genome sequenced. These sequences demonstrate that, very unusually for an aspergillus outbreak, a single strain of aspergillus caused the outbreak. This strain was found on two islands, but only one had an outbreak of aspergillosis; indicating that the strain was necessary, but not sufficient, to cause disease. Our analysis provides an understanding of the 2019 outbreak and provides potential ways to manage such events in the future
    corecore