76 research outputs found

    Illegal Importations: Enforcement of the Slave Trade Laws Along the Florida Coast, 1810-1828

    Get PDF
    The above quotations, decrying the evils of the slave trade are from two widely disparate sources and periods. The first may be found in an anti-slave trade tract of the Society of Friends published in 1824, and the second is from the opinion in a federal case involving slave trading activities in 1860. Both are evidence of the futility of the hopes of the founding fathers in 1787, that slavery and its companion evil, the slave trade, were but temporary problems for the United States. At the beginning of the nineteenth century, the cotton gin and the textile mills destroyed these hopes, and the institution of slavery became a foundation stone of southern life. Although in 1808, the slave trade was prohibited by congressional action, the absence of specific enforcement machinery led to multiple violations of the law. Profits were too great to be resisted as the demand and price for slaves rose in the United States after the War of 1812

    Valoración del pie plano en personas adultas con síndrome de Down y de su afectación en la vida diaria

    Get PDF
    Se realizó un estudio en 50 adultos con síndrome de Down, entre 18 y 40 años para analizar la incidencia e influencia del pie plano sobre el funcionamiento de la vida diaria. La incidencia fue del 70%, con grados diversos de pie plano. Hubo dolor en 4 personas, si bien era debido a otros problemas y no achacable al pie plano. En ningún caso la presencia de pie plano afectó al funcionamiento de la vida ordinaria

    Specialty Care Use in US Patients with Chronic Diseases

    Get PDF
    Despite efforts to eliminate health disparities, racial, ethnic, and geographic groups continue lag behind their counterparts in health outcomes in the United States. The purpose of this study is to determine variation in specialty care utilization by chronic disease status. Data were extracted from the Commonwealth Fund 2006 Health Care Quality Survey (n = 2475). A stratified minority sample design was employed to ensure a representative sample. Logistic regression was used in analyses to predict specialty care utilization in the sample. Poor perceived health, minority status, and lack of insurance was associated with reduced specialty care use and chronic disease diagnosis

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    SARS-CoV-2 breakthrough infections among vaccinated individuals with rheumatic disease : Results from the COVID-19 Global Rheumatology Alliance provider registry

    Get PDF
    Funding Information: members of the COVID-19 Global Rheumatology Alliance and do not necessarily represent the views of the American College of Rheumatology (ACR), EULAR, the UK National Health Service (NHS), the National Institute for Health Research (NIHR), the UK Department of Health or any other organisation. Competing interests KLH reports she has received non-personal speaker’s fees from AbbVie and grant income from BMS, UCB and Pfizer, all unrelated to this manuscript; KLH is supported by the NIHR Manchester Biomedical Research Centre. LG reports personal consultant fees from AbbVie, Amgen, BMS, Biogen, Celgene, Gilead, Janssen, Lilly, Novartis, Pfizer, Samsung Bioepis, Sanofi-Aventis and UCB, and grants from Amgen, Lilly, Janssen, Pfizer, Sandoz, Sanofi and Galapagos, all unrelated to this manuscript. AS reports research grants from a consortium of 14 companies (among them AbbVie, BMS, Celltrion, Fresenius Funding Information: Kabi, Gilead/Galapagos, Lilly, Mylan/Viatris, Hexal, MSD, Pfizer, Roche, Samsung, Sanofi-Aventis and UCB) supporting the German RABBIT register and personal fees from lectures for AbbVie, MSD, Roche, BMS, Lilly and Pfizer, all unrelated to this manuscript. LC has not received fees or personal grants from any laboratory, but her institute works by contract for laboratories among other institutions, such as AbbVie Spain, Eisai, Gebro Pharma, Merck Sharp & Dohme España, Novartis Farmaceutica, Pfizer, Roche Farma, Sanofi-Aventis, Astellas Pharma, Actelion Pharmaceuticals España, Grünenthal and UCB Pharma. EF-M reports personal consultant fees from Boehringer Ingelheim Portugal and that LPCDR received support for specific activities: grants from AbbVie, Novartis, Janssen-Cilag, Lilly Portugal, Sanofi, Grünenthal, MSD, Celgene, Medac, Pharmakern and GAfPA; grants and non-financial support from Pfizer; and non-financial support from Grünenthal, outside the submitted work. IB reports personal consultant fees from AbbVie, Novartis, Pfizer and Janssen, all unrelated to this manuscript. JZ reports speaker fees from AbbVie, Novartis and Janssen/Johnson & Johnson, all unrelated to this manuscript. GR-C reports personal consultant fees from Eli Lilly and Novartis, all unrelated to this manuscript. JS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01 AR077607, P30 AR070253 and P30 AR072577), and the R Bruce and Joan M Mickey Research Scholar Fund. JS has received research support from Amgen and Bristol Myers Squibb and performed consultancy for Bristol Myers Squibb, Gilead, Inova, Janssen and Optum, unrelated to this work. LW receives speaker’s bureau fees from Aurinia Pharma, unrelated to this manuscript. SB reports no competing interests related to this work. He reports non-branded consulting fees for AbbVie, Horizon and Novartis (all <10000).MGMhasnocompetinginterestsrelatedtothiswork.SheservesasapatientconsultantforBMS,BIJNJandAurinia(all<10 000). MGM has no competing interests related to this work. She serves as a patient consultant for BMS, BI JNJ and Aurinia (all <10 000). RG reports no competing interests related to this work. Outside of this work she reports personal and/or speaking fees from AbbVie, Janssen, Novartis, Pfizer and Cornerstones and travel assistance from Pfizer (all <10000).JHreportsnocompetinginterestsrelatedtothiswork.HeissupportedbygrantsfromtheRheumatologyResearchFoundationandhassalarysupportfromtheChildhoodArthritisandRheumatologyResearchAlliance.HehasperformedconsultingforNovartis,SobiandBiogen,allunrelatedtothiswork(<10 000). JH reports no competing interests related to this work. He is supported by grants from the Rheumatology Research Foundation and has salary support from the Childhood Arthritis and Rheumatology Research Alliance. He has performed consulting for Novartis, Sobi and Biogen, all unrelated to this work (<10 000). ESi reports non-financial support from Canadian Arthritis Patient Alliance, outside the submitted work. PS reports personal fees from the American College of Rheumatology/Wiley Publishing, outside the submitted work. ZW reports grant support from Bristol Myers Squibb and Principia/Sanofi and performed consultancy for Viela Bio and MedPace, outside the submitted work. His work is supported by grants from the National Institutes of Health. PMM has received consulting/speaker’s fees from AbbVie, BMS, Celgene, Eli Lilly, Galapagos, Janssen, MSD, Novartis, Orphazyme, Pfizer, Roche and UCB, all unrelated to this study. PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). PCR reports no competing interests related to this work. Outside of this work PCR reports personal fees from AbbVie, Atom Bioscience, Eli Lilly, Gilead, GlaxoSmithKline, Janssen, Kukdong, Novartis, UCB, Roche and Pfizer; meeting attendance support from BMS, Pfizer and UCB; and grant funding from Janssen, Novartis, Pfizer and UCB Pharma (all <$10 000). JY reports no competing interests related to this work. Her work is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155). Outside of this work, she has received research grants or performed consulting for Gilead, BMS Foundation, Pfizer, Aurinia and AstraZeneca. Funding Information: Twitter Jean Liew @rheum_cat, Loreto Carmona @carmona_loreto, Pedro M Machado @pedrommcmachado and Philip C Robinson @philipcrobinson Contributors All authors contributed to the study design, data collection, interpretation of results and review/approval of the final submitted manuscript. JL and MG are guarantors for this manuscript. Funding MG reports grants from the National Institutes of Health, NIAMS, outside the submitted work. KLH is supported by the NIHR Manchester Biomedical Research Centre. JS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01 AR077607, P30 AR070253 and P30 AR072577), and the R Bruce and Joan M Mickey Research Scholar Fund. JH is supported by grants from the Rheumatology Research Foundation. ZW is supported by grants from the National Institutes of Health. PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). JY is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155). Publisher Copyright: ©Objective. While COVID-19 vaccination prevents severe infections, poor immunogenicity in immunocompromised people threatens vaccine effectiveness. We analysed the clinical characteristics of patients with rheumatic disease who developed breakthrough COVID-19 after vaccination against SARS-CoV-2.  Methods. We included people partially or fully vaccinated against SARS-CoV-2 who developed COVID-19 between 5 January and 30 September 2021 and were reported to the Global Rheumatology Alliance registry. Breakthrough infections were defined as occurring ≥14 days after completion of the vaccination series, specifically 14 days after the second dose in a two-dose series or 14 days after a single-dose vaccine. We analysed patients' demographic and clinical characteristics and COVID-19 symptoms and outcomes. Results SARS-CoV-2 infection was reported in 197 partially or fully vaccinated people with rheumatic disease (mean age 54 years, 77% female, 56% white). The majority (n=140/197, 71%) received messenger RNA vaccines. Among the fully vaccinated (n=87), infection occurred a mean of 112 (±60) days after the second vaccine dose. Among those fully vaccinated and hospitalised (n=22, age range 36-83 years), nine had used B cell-depleting therapy (BCDT), with six as monotherapy, at the time of vaccination. Three were on mycophenolate. The majority (n=14/22, 64%) were not taking systemic glucocorticoids. Eight patients had pre-existing lung disease and five patients died. Conclusion. More than half of fully vaccinated individuals with breakthrough infections requiring hospitalisation were on BCDT or mycophenolate. Further risk mitigation strategies are likely needed to protect this selected high-risk population.publishersversionPeer reviewe

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]
    corecore