510 research outputs found

    Natural Suppression of the Aquatic Weed Salvinia molesta D.S. Mitchell, by Two Previously Unreported Fungal Pathogens

    Get PDF
    Salvinia molesta D. S. Mitchell (Salviniaceae), variously called giant salvinia, water fern or African payal, is a vegetatively reproducing, perennial, free-floating, aquatic weed, native to southeastern Brazil (Waterhouse and Norris 1987). It (hereafter called salvinia) is a very serious weed in most regions outside its native range (Harley and Mitchell 1981) including India. The purpose of this paper is to report on two fungal pathogens that were found to be the cause of a sudden decline in salvinia in Bangalore.(PDF has 4 pages.

    Unfolding kinetics of beta-lactoglobulin induced by surfactant and denaturant: a stopped-flow/fluorescence study

    Get PDF
    The beta ->alpha transition of beta-lactoglobulin, a globular protein abundant in the milk of several mammals, is investigated in this work. This transition, induced by the cationic surfactant dodecyltrimethylammonium chloride (DTAC), is accompanied by partial unfolding of the protein. In this work, unfolding of bovine beta-lactoglobulin in DTAC is compared with its unfolding induced by the chemical denaturant guanidine hydrochloride (GnHCl). The final protein states attained in the two media have quite different secondary structure: in DTAC the alpha-helical content increases, leading to the so-called alpha-state; in GnHCl the amount of ordered secondary-structure decreases, resulting in a random coil-rich final state (denatured, or D, state). To obtain information on both mechanistic routes, in DTAC and GnHCl, and to characterize intermediates, the kinetics of unfolding were investigated in the two media. Equilibrium and kinetic data show the partial accumulation of an on-pathway intermediate in each unfolding route: in DTAC, an intermediate (I-1) with mostly native secondary structure but loose tertiary structure appears between the native (beta) and alpha-states; in GnHCl, another intermediate (I-2) appears between states beta and D. Kinetic rate constants follow a linear Chevron-plot representation in GnHCl, but show a more complex mechanism in DTAC, which acts like a stronger binding species.info:eu-repo/semantics/publishedVersio

    Production, purification, and characterization of thermostable alkaline xylanase from Anoxybacillus kamchatkensis NASTPD13

    Get PDF
    Anoxybacillus kamchatkensis NASTPD13 used herein as a source for thermostable alkaline xylanase were isolated from Paudwar Hot Springs, Nepal. NASTPD13 cultured at 60°C, pH 7 and in presence of inorganic (ammonium sulfate) or organic (yeast extract) nitrogen sources, produced maximum xylanase enzyme. Xylanase production in the cultures was monitored by following the ability of culture media to hydrolyze beech wood xylan producing xylooligosaccharide and xylose by thin layer chromatography (TLC). The extracellular xylanase was isolated from optimized A. kamchatkensis NASTPD13 cultures by ammonium sulfate (80%) precipitation; the enriched xylanase preparation was dialyzed and purified using Sephadex G100 column chromatography. The purified xylanaseshowed 11-fold enrichment with a specific activity of 33 U/mg and molecular weight were37 kDa based on SDS-PAGE and PAGE-Zymography. The optimum pH and temperature of purified xylanase was 9.0 and 65°C respectively retainingmore than 50% of its maximal activity over a broad range of pH (6–9) and temperature (30–65°C). With beech wood xylan, the enzyme showed Km 0.7 mg/ml and Vmax 66.64 μM/min/mg The xylanase described herein is a secretory enzyme produced in large quantities by NASTPD13 and is a novel thermostable, alkaline xylanase with potential biotechnological applications.Scopu

    Enhancement of Ethanol Production in Electrochemical Cell by Saccharomyces cerevisiae (CDBT2) and Wickerhamomyces anomalus (CDBT7)

    Get PDF
    Bioethanol (a renewable resource), blended with gasoline, is used as liquid transportation fuel worldwide and produced from either starch or lignocellulose. Local production and use of bioethanol supports local economies, decreases country's carbon footprint and promotes self-sufficiency. The latter is especially important for bio-resource-rich land-locked countries like Nepal that are seeking alternative transportation fuels and technologies to produce them. In that regard, in the present study, we have used two highly efficient ethanol producing yeast strains, viz., Saccharomyces cerevisiae (CDBT2) and Wickerhamomyces anomalous (CDBT7), in an electrochemical cell to enhance ethanol production. Ethanol production by CDBT2 (anodic chamber) and CDBT7 (cathodic chamber) control cultures, using 5% glucose as substrate, were 12.6 ± 0.42 and 10.1 ± 0.17 mg·mL−1 respectively. These cultures in the electrochemical cell, when externally supplied with 4V, the ethanol production was enhanced by 19.8 ± 0.50% and 23.7 ± 0.51%, respectively, as compared to the control cultures. On the other hand, co-culturing of those two yeast strains in both electrode compartments resulted only 3.96 ± 0.83% enhancement in ethanol production. Immobilization of CDBT7 in the graphite cathode resulted in lower enhancement of ethanol production (5.30 ± 0.82%), less than free cell culture of CDBT7. CDBT2 and CDBT7 when cultured in platinum nano particle coated platinum anode and neutral red-coated graphite cathode, respectively, ethanol production was substantially enhanced (52.8 ± 0.44%). The above experiments when repeated using lignocellulosic biomass hydrolysate (reducing sugar content was 3.3%) as substrate, resulted in even better enhancement in ethanol production (61.5 ± 0.12%) as compared to glucose. The results concluded that CDBT2 and CDBT7 yeast strains produced ethanol efficiently from both glucose and lignocellulosic biomass hydrolysate. Ethanol production was enhanced in the presence of low levels of externally applied voltage. Ethanol production was further enhanced with the better electron transport provision i.e., when neutral red was deposited on cathode and fine platinum nanoparticles were coated on the platinum anode

    Plasminogen Activator Inhibitor-1 in Cigarette Smoke Exposure and Influenza A Virus Infection-Induced Lung Injury

    Get PDF
    Parenchymal lung inflammation and airway and alveolar epithelial cell apoptosis are associated with cigarette smoke exposure (CSE), which contributes to chronic obstructive pulmonary disease (COPD). Epidemiological studies indicate that people exposed to chronic cigarette smoke with or without COPD are more susceptible to influenza A virus (IAV) infection. We found increased p53, PAI-1 and apoptosis in AECs, with accumulation of macrophages and neutrophils in the lungs of patients with COPD. In Wild-type (WT) mice with passive CSE (PCSE), p53 and PAI-1 expression and apoptosis were increased in AECs as was lung inflammation, while those lacking p53 or PAI-1 resisted AEC apoptosis and lung inflammation. Further, inhibition of p53-mediated induction of PAI-1 by treatment of WT mice with caveolin-1 scaffolding domain peptide (CSP) reduced PCSE-induced lung inflammation and reversed PCSE-induced suppression of eosinophil-associated RNase1 (EAR1). Competitive inhibition of the p53-PAI-1 mRNA interaction by expressing p53-binding 3\u27UTR sequences of PAI-1 mRNA likewise suppressed CS-induced PAI-1 and AEC apoptosis and restored EAR1 expression. Consistent with PCSE-induced lung injury, IAV infection increased p53, PAI-1 and apoptosis in AECs in association with pulmonary inflammation. Lung inflammation induced by PCSE was worsened by subsequent exposure to IAV. Mice lacking PAI-1 that were exposed to IAV showed minimal viral burden based on M2 antigen and hemagglutination analyses, whereas transgenic mice that overexpress PAI-1 without PCSE showed increased M2 antigen and inflammation after IAV infection. These observations indicate that increased PAI-1 expression promotes AEC apoptosis and exacerbates lung inflammation induced by IAV following PCSE

    Strategies and options for increasing and sustaining fisheries and aquaculture production to benefit poorer households in Asia

    Get PDF
    The last three decades have witnessed dramatic changes in the structure of supply and demand for fish, especially in Asia. This WorldFish research study sponsored by the Asian Development Bank focussed on nine developing countries – Bangladesh, China, India, Indonesia, Malaysia, the Philippines, Sri Lanka, Thailand, and Vietnam, all active players in the transformation of global fish supply and demand. The study, broken into five components and reported here, considered: 1) the profile of key aquaculture technologies and fishing practices; 2) analysis of policies, institutions and support services; 3) socioeconomic profile of major stakeholders in the fisheries sector; 4) projections of fish demand and supply in the nine Asian countries; and 5) formulation of national action plans based on the findings and recommendations of the study

    Insights into the mode of action of a putative zinc transporter CzrB in thermus thermophilus

    Get PDF
    peer-reviewedThis paper was obtained through PEER (Publishing and the Ecology of European Research) http://www.peerproject.euThe crystal structures of the cytoplasmic domain of the putative zinc transporter CzrB in the apoand zinc-bound forms reported herein are consistent with the protein functioning in vivo as a homodimer. NMR, X-ray scattering and size exclusion chromatography provide support for dimer formation. Full-length variants of CzrB in the apo and zinc-loaded states were generated by homology modelling with the Zn2+ / H+ antiporter YiiP. The model suggests a way in which zinc binding to the cytoplasmic fragment creates a docking site to which a metallochaperone can bind for delivery and transport of its zinc cargo. Since the cytoplasmic domain may exist in the cell as an independent, soluble protein a proposal is advanced that it functions as a metallochaperone and that it regulates the zinc-transporting activity of the full-length protein. The latter requires that zinc binding becomes uncoupled from the creation of a metallochaperone-docking site on CzrB

    Caspase Inhibitors of the P35 Family Are More Active When Purified from Yeast than Bacteria

    Get PDF
    Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a “reactive site loop” within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins) may underestimate their activity

    Latherin: A Surfactant Protein of Horse Sweat and Saliva

    Get PDF
    Horses are unusual in producing protein-rich sweat for thermoregulation, a major component of which is latherin, a highly surface-active, non-glycosylated protein. The amino acid sequence of latherin, determined from cDNA analysis, is highly conserved across four geographically dispersed equid species (horse, zebra, onager, ass), and is similar to a family of proteins only found previously in the oral cavity and associated tissues of mammals. Latherin produces a significant reduction in water surface tension at low concentrations (≤1 mg ml−1), and therefore probably acts as a wetting agent to facilitate evaporative cooling through a waterproofed pelt. Neutron reflection experiments indicate that this detergent-like activity is associated with the formation of a dense protein layer, about 10 Å thick, at the air-water interface. However, biophysical characterization (circular dichroism, differential scanning calorimetry) in solution shows that latherin behaves like a typical globular protein, although with unusual intrinsic fluorescence characteristics, suggesting that significant conformational change or unfolding of the protein is required for assembly of the air-water interfacial layer. RT-PCR screening revealed latherin transcripts in horse skin and salivary gland but in no other tissues. Recombinant latherin produced in bacteria was also found to be the target of IgE antibody from horse-allergic subjects. Equids therefore may have adapted an oral/salivary mucosal protein for two purposes peculiar to their lifestyle, namely their need for rapid and efficient heat dissipation and their specialisation for masticating and processing large quantities of dry food material
    corecore