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RESEARCH ARTICLE

Plasminogen Activator Inhibitor-1 in
Cigarette Smoke Exposure and Influenza A
Virus Infection-Induced Lung Injury
Yashodhar P. Bhandary1, Shwetha K. Shetty1, Amarnath S. Marudamuthu1, Krishna
K. Midde1, Hong-Long Ji1, Homoyoun Shams1, Renuka Subramaniam1, Jian Fu2,
Steven Idell1, Sreerama Shetty1*

1 Texas Lung Injury Institute, Department of Medicine, University of Texas Health Science Center at Tyler,
Tyler, Texas, United States of America, 2 Center for Research on Environmental Disease and Toxicology,
College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America

* sreerama.shetty@uthct.edu

Abstract
Parenchymal lung inflammation and airway and alveolar epithelial cell apoptosis are associ-

ated with cigarette smoke exposure (CSE), which contributes to chronic obstructive pulmo-

nary disease (COPD). Epidemiological studies indicate that people exposed to chronic

cigarette smoke with or without COPD are more susceptible to influenza A virus (IAV) infec-

tion. We found increased p53, PAI-1 and apoptosis in AECs, with accumulation of macro-

phages and neutrophils in the lungs of patients with COPD. In Wild-type (WT) mice with

passive CSE (PCSE), p53 and PAI-1 expression and apoptosis were increased in AECs as

was lung inflammation, while those lacking p53 or PAI-1 resisted AEC apoptosis and lung

inflammation. Further, inhibition of p53-mediated induction of PAI-1 by treatment of WT

mice with caveolin-1 scaffolding domain peptide (CSP) reduced PCSE-induced lung inflam-

mation and reversed PCSE-induced suppression of eosinophil-associated RNase1

(EAR1). Competitive inhibition of the p53-PAI-1 mRNA interaction by expressing p53-bind-

ing 3’UTR sequences of PAI-1 mRNA likewise suppressed CS-induced PAI-1 and AEC ap-

optosis and restored EAR1 expression. Consistent with PCSE-induced lung injury, IAV

infection increased p53, PAI-1 and apoptosis in AECs in association with pulmonary inflam-

mation. Lung inflammation induced by PCSE was worsened by subsequent exposure to

IAV. Mice lacking PAI-1 that were exposed to IAV showed minimal viral burden based on

M2 antigen and hemagglutination analyses, whereas transgenic mice that overexpress

PAI-1 without PCSE showed increased M2 antigen and inflammation after IAV infection.

These observations indicate that increased PAI-1 expression promotes AEC apoptosis and

exacerbates lung inflammation induced by IAV following PCSE.
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Introduction
Exposure to cigarette smoke (CS) is a common clinical problem associated with considerable
morbidity, with an estimated 30% of cancer-related deaths attributed to tobacco use [1]. The
United States Environmental Protection Agency has documented that each year there are 3000
lung cancer deaths and 53,000 coronary artery disease-related deaths in individuals with pas-
sive CS exposure (PCSE) [2]. PCSE induces airway injury and remodeling characteristic of
chronic obstructive pulmonary disease (COPD), which is the fourth major cause of death in
the United States [3]. The major components of extravascular fibrinolysis in lungs have been
implicated in the pathogenesis of lung remodeling, participate in fibrotic repair and regulate
airway and alveolar epithelial cell (AEC) viability. The pathophysiology of PCSE-induced lung
inflammation has been directly linked to loss of alveolar architecture due to AEC apoptosis,
suppressed body immunity and increased susceptibility to respiratory infections [4,5], which
include infection with influenza A viral (IAV). PCSE/CSE can increase the morbidity of influ-
enza infections, representing an important medical problem.

Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor which irreversibly in-
hibits the activities of tissue-type plasminogen activator (tPA) and urokinase-type plasminogen
activator (uPA). Defective alveolar fibrinolysis due to increased expression of PAI-1 is common
in lung diseases such as acute lung inflammation(ALI), asthma, pneumonia, COPD, adult respi-
ratory distress syndrome (ARDS) and interstitial lung diseases [6–13]. It has been reported that
nicotine, a major constituent of CS, induces PAI-1 expression by endothelial cells and that plas-
ma PAI-1 levels significantly increase in subjects who are exposed to CS [14,15]. We have recent-
ly reported that AECs exposed to PCS show augmented p53 and PAI-1 expression and that the
p53-induced apoptosis of AECs is mediated by increased PAI-1 during bleomycin- or PCS- in-
duced lung inflammation [16,17]. The process involves the binding of p53 through its C-termi-
nal region to a 70 nucleotide cis element present in the 3’untranslated region of PAI-1 mRNA
and stabilization of PAI-1 mRNA transcripts [18]. These observations lend support to the con-
cept that PAI-1 plays a central role in PCSE induced lung inflammation.

However, little is now known about how PAI-1 affects the viability of AECs, alveolar inflam-
mation or the severity of influenza A virus (IAV) infection after PCSE. In the present study, we
demonstrate that a disproportionate increase in the expression of PAI-1 mediated by elevated
p53 in AECs due to PCSE promotes lung inflammation. Further inhibition of PCSE-induced
p53 and downstream PAI-1 mitigates pulmonary inflammation after PCSE followed by IAV-
induced lung injury. Our study also shows that increased expression of PAI-1 aggravates the se-
verity of IAV infection following PCSE. These observations link PCSE-induced alterations of
PAI-1 to clinically important outcomes of IAV infection, including airway epithelial injury and
lung inflammation associated with this infection.

Materials and Methods

Isolation of type II AECs from mouse lungs
Type II AECs were isolated according to the method described previously and the purity of the
preparations was confirmed by lithium carbonate staining [19,20]. Type II AECs were main-
tained in AEC culture medium (ScienCell, CA). 293T cells from the American Type Culture
Collection (Manassas, VA) and cultured in DMEMmedia containing 10% FBS.

Construction of recombinant Adenoviral (Ad) vectors
A chimeric cDNA containing the SP-B 5’flanking sequences and 70 nt p53-binding PAI-1
mRNA 3’UTR sequences [18] was inserted into an empty Ad vector. A cDNA fragment that
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contains the SP-B 5’flanking sequences and sequences lacking p53-binding PAI-1 mRNA
3’UTR was also sub cloned into a promoter-less Ad vector and used as a control. These Ad vec-
tor constructs were transfected into 293T cells using Lipofectamine 2000 (Invitrogen) to obtain
phage particles and viral titers measured as per the manufacturer’s protocol (Cell Biolabs, Inc).
The Ad vector containing the SP-B 5’flanking DNA linked to p53-binding or control non-
p53-binding 3’UTR sequences were exposed to type II AECs as described elsewhere [21].

Mice
WT, p53- and PAI-1-deficient mice as well as transgenic mice that overexpress PAI-1 of
C57BL-6 background were purchased from the Jackson Lab (Bar Harbor, ME), bred at The
University of Texas Health Science Center at Tyler.

Human tissue samples
Human lung tissues were obtained from Lung Tissue Research Consortium (LTRC) and from
The Department of Pathology; The University of Texas Health Science Center at Tyler
(UTHSCT) using IRB approved exempt protocol [16, 22] and was deidentified prior to analy-
sis. Lung tissues from patients with a clinical diagnosis of COPD were obtained. The clinical di-
agnosis of the patients is generally established based on documented airways obstruction by
spirometry, a history of cigarette smoking exposure and a compatible clinical picture. These
specimens were usually obtained from patients undergoing resections for lung cancer superim-
posed on clinical COPD. Both active smokers and those with a past history of smoking were in-
cluded in this cohort. Normal lung tissues were histologically normal tissues typically obtained
from patients undergoing lung resections of neoplasms, with the surrounding normal lung
committed to these studies. These patients did not have a clinical diagnosis of COPD nor histo-
logic evidence of emphysema or chronic bronchitis.

Preparation of CS extract
CS extracts were prepared using research cigarettes 2R4F from the Tobacco Health Research
University of Kentucky (Lexington, KY) by following the method developed by Carp and Jan-
off [23]. One cigarette at each interval was burned in a side arm flask and the smoke generated
was bubbled into phosphate buffered saline at room temperature (22°C) through an attached
peristaltic pump. Enough cigarettes were burned to reach an absorbance of 1.0 at 230 nm,
which is considered 100%. CS extract was filter sterilized by passing it through a 0.2 μm filter.
Fresh CS was prepared to desired concentrations in serum free media and used within
30 minutes.

PCSE
All experiments involving mice were performed according to the approved protocols under the
guidelines of Animal Care and Use Committee of The University of Texas Health Science Cen-
ter at Tyler (Permit Number: A3589-01) [16,17]. WT, p53-/- and PAI-1-/- mice were exposed
to PCS from 40 cigarettes over a 2h period five days per week for 20 weeks (~90 mg/m3 total
solid particulates) using a mechanical smoking chamber (Teague Enterprises, Davis, CA) as we
described [17]. Control mice remained in ambient air in otherwise identical conditions. Mice
were euthanized by IP injection of Euthasol 5 μl/g body weight after which their lungs were
harvested and used for various analyses.
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Influenza A virus infection
Mouse-adapted influenza virus A/Puerto Rico/8/34 (PR8) (H1N1) strain was used in all experi-
ments. For IAV infection, WT, PAI-1-/- and PAI-1+/+ mice were intranasally inoculated with
50 μl of PBS containing purified H1N1 PR8 stain (0.5 LD50) under light general anesthesia
with a combination of Ketamine/Xylazine [24]. All infected mice were monitored for weight
loss and mortality on a daily basis. For IAV infection post PCSE, WT and PAI-1-deficient mice
were exposed to PCS for 19 weeks and were later treated with saline or purified IAV as de-
scribed above. Control mice in ambient air were also exposed to 50 μl saline through intranasal
instillation. One week after IAV infection, mice were euthanized and lungs were harvested for
various analysis. For hemagglutination analyses, lungs fromWT and PAI mice were homoge-
nized and diluted ten-fold before exposure to Madin-Darby Canine Kidney (MDCK) cells in
96-well culture dishes. These cells were cultured in RPMI 1640 (Life technologies, CA) supple-
mented with 10% FBS at 37°C and 5% CO2. After 72h, 50μl of culture medium from infected
MDCK cells added to 50μl of 0.5% chicken RBCs in 96-well round bottom plates, swirled and
incubated at room temperature. Hemagglutination or the lack thereof was recorded after an
hour and the tissue culture infective dose (TCID50) of IAV was calculated by the Spearman-
Karber formula.

Western blotting of AEC lysates
Lung homogenates or isolated Type II AEC lysates were subjected to SDS-PAGE, transferred
to nitrocellulose membrane and incubated with primary antibodies at 1:1000 dilutions at 4°C
overnight followed by reaction with goat anti-rabbit or anti-mouse-HRP-conjugated secondary
antibody at 1:1000 dilutions for 1 h at room temperature. Protein bands were visualized by en-
hanced chemiluminescence detection method as we described earlier [16–18,21,25].

Measurement of myeloperoxidase (MPO) activity
Mouse lung MPO activity was determined as described previously [26,27]. Briefly, lungs were
suspended in 1 ml buffer (0.5% hexadecyl-trimethylammonium bromide in 50 mM phosphate
buffer, pH 6.0) and sonicated at 30 cycles twice for 30 seconds on ice. Homogenates were cen-
trifuged at 12,000 rpm and MPO activity in supernatants measured by colorimetric method
using o-dianisidine dihydrochloride and H2O2 in a 96-well plate. MPO activity levels in lung
samples were determined from a standard curve generated using known amounts of purified
MPO (Sigma, MO).

Immunohistochemical (IHC) and immunofluorescence assay
Lung sections (5 μm) were subjected to IHC analysis using antigen detection kit provided by
Lab Vision (Fremont, CA) as we described elsewhere [16,17,21]. Lung sections exposed to rab-
bit IgG served as negative controls. The numbers of neutrophils and macrophages were as-
sessed via immunohistochemical staining of lung sections by counting positive cells in 10 high-
powered fields (hpf, original magnification×400) per section. For immunofluorescence assays,
lungs sections were incubated overnight with primary antibody or control IgG. These sections
were later treated with fluorochrome conjugated secondary antibody. The lung sections were
then examined by fluorescent microscopy.

RT-PCR
Total RNA was isolated from lung tissues or isolated type II AECs using TRI reagent and re-
verse transcribed using impromII Reverse transcription kit (Promega, WI USA). For PCR,
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EAR (forward primer: 5’GATCGAATTCAATACTTTTCTTCATACAA-3’ and reverse prim-
er: 5’GATCGGATCCGTGAACTGGAACCACTGGATA-3’ and β-actin (forward: 5’CACCG
CAGCTCGTAGCTCTTCTCCAGGG-3’ and reverse: 5’CCAGCCATGTACG TTGCTATC
CAG-3’ primers were used to amplify aliquots of cDNA respectively [28]. The thermal cycling
profile for EAR and β-actin was 94°C for 2 minutes, followed by 35 cycles of 94°C for 1 minute,
63°C for 1 minute, and 72°C for 1 minute, with a final extension of 72°C for 2 minutes.

Assessments of lung epithelial cell apoptosis
To study the programmed cell death in the lungs of PCSE-treated mice, we used the terminal
uridine deoxynucleotidyl transferase (dUTP) nick end-labeling (TUNEL) staining technique.
The lungs from each animal were sectioned and were blocked with hydrogen peroxidase, incu-
bated with biotinylated nucleotides in the presence of terminal deoxynucleotidyl transferase
(TdT) enzyme for 1 hour at 37°C. The sections were then incubated with horse radish peroxi-
dase (HRP) substrate and diaminobenzidine (DAB) chromogen to label the nicked DNA.
Large conducting airways, small airways including terminal bronchioles and respiratory bron-
chioles, and alveoli were examined by a lung pathologist (TCA). The entire lung section of
each case was examined sequentially at high power (400x). The large conducting airways, small
airways, and alveolar cells from the hpf were scored for strong brown nuclear staining within
epithelial cells indicating TUNEL positivity. Cells were scored as follows: (1) average of 0 to 2
positive nuclei per 10 hpf, (2) average of 3 to 6 positive nuclei per 10 hpf, (3) average of 7 to 10
positive nuclei per 10 hpf, (4) average of 11 to 20 positive nuclei per 10 hpf and (5) average of
21 or more positive nuclei per 10 hpf. The large airways, small airways, and alveoli were also
evaluated for airway remodeling, including smooth muscle hyperplasia and sub mucosal air-
way fibrosis, as well as for macrophage and other inflammatory cell infiltration, and emphyse-
matous change.

Statistical analysis
Statistical significance between two groups was analyzed by Student’s t test and for multiple
groups by two-way ANOVA tests. Graph pad Prism 4.0 software was used to analyze statistical
differences.

Results
We previously reported that p53 induces PAI-1 through inhibition of PAI-1 mRNA degrada-
tion and we also demonstrated that inhibition of PCSE-induced p53 or PAI-1 prevents AEC
apoptosis in murine lungs [17,18]. Therefore, we sought to extend this work and initially deter-
mine the impact of this system on human COPD. We first analyzed lung sections of patients
with COPD to characterize the injury and the responses were compared with control patients
without COPD. Hematoxylin and Eosin (H&E) staining of COPD lung sections revealed in-
creased pulmonary inflammation. Further, differential staining for macrophage and MPO ac-
tivity confirmed increased accumulation of both macrophages and neutrophils in COPD lungs
(Fig 1A). Analysis of lung homogenates for MPO activity confirmed increased neutrophil accu-
mulation in COPD lungs (Fig 1B). IHC analysis of COPD lung sections also showed increased
AEC apoptosis associated with induction of p53 and PAI-1 and reduced SP-C expression (Fig
1C). Immunofluorescence and co-localization (Fig 1D) indicated that apoptosis was predomi-
nantly restricted to type II AECs, indicating a temporal, spatial and cell-specific link between
increased p53 and PAI-1 expression and apoptosis in type II AECs of the lungs of COPD
patients.
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Fig 1. Increased p53 and PAI-1 antigen levels, and AEC apoptosis in the lung tissues of patients with COPD. (A) Paraffin embedded sections from
COPD and histologically “normal” donor lung tissues were subjected to H & E and IHC staining for macrophages and myeloperoxidase (MPO) using specific
antibodies. (B) Lung homogenates from COPD (n = 3) and histologically “normal” donor lung tissues from control patients were also tested for MPO activity
by colorimetric assay. Data shown in bar graphs are mean ± SD of two independent experiments. (C) The lung sections were also subjected to IHC analysis
using anti-p53, anti-PAI-1, anti-active caspase-3 and anti-SP-C antibodies to assess their expression and apoptosis in AECs. Lung sections were also
subjected to TUNEL staining to assess apoptosis. (D) Immunofluorescence staining was performed for the above lung sections using anti-SP-C and anti-
active caspase-3 primary antibodies and fluorescently labeled secondary antibodies to assess apoptosis of type II AECs. Representative fields from 1 of 3
sections per subject are shown at X 400 magnification.

doi:10.1371/journal.pone.0123187.g001
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p53 induces PAI-1 expression during PCSE-induced lung inflammation[17,18]. To confirm
the inferred involvement of p53-mediated induction of PAI-1 in PCSE-induced lung inflam-
mation, we analyzed the lung lavage (LL) fluids from the WT mice exposed to PCS. LL total
cell counts and protein indicated a significant increase in total number of leukocytes and pro-
tein contents compared to ambient air exposed controls (p<0.005, Fig 2A & 2B). We next ex-
posed the WT, p53- and PAI-1- deficient mice to PCS. The dosage (90 mg/m3 total particulate
matter) and duration (20 weeks) were selected based on the reported literature by many labora-
tories including ours [17] for second hand CS exposure. The total particulate matter of 90 mg/
m3 is within the concentration limits reported by other laboratories [29–31]. Earlier report also
showed that exposure of mice to higher dose (>250–300 mg/m3 total particulate matter) of CS
for extended period (9 months or more) might develop discernible emphysema [32]. Since
p53-deficient mice spontaneously develop lymphoma as they age beyond 5 months and our
main focus was to assess the contribution of p53 and PAI-1 in cigarette smoke induced lung
epithelial cell apoptosis, we limited the animals to 20 weeks of exposure. We next stained lung
sections of mice exposed to PCS for 20 weeks with H & E. Lung sections of WT mice exposed
to PCS showed increased accumulation of leukocytes compared to control mice exposed to am-
bient air (Fig 2C). However, mice lacking either p53 or PAI-1 resisted PCSE-induced lung in-
flammation. Further quantitative analysis of neutrophils and macrophages through IHC
analysis for MPO and macrophages antigens confirmed an increased influx of neutrophils (Fig
2D) and macrophages (Fig 2E) in WT PCSE mice, which were significantly reduced in mice
lacking p53 or PAI-1 expression. Analysis of lung homogenates showed increased MPO activi-
ty in WT mice exposed to 20 weeks of PCS (Fig 2F), which was significantly reduced in both
p53- and PAI-1-deficient mice.

Since p53-mediated induction of PAI-1 contributes to increased lung inflammation during
PCSE-induced lung injury, lung sections from control and PCS-treated mice were next stained
for nicked DNA by TUNEL analyses to assess AEC apoptosis. WT, PAI-1-/-, and p53-/- non-
smoked cases averaged slightly more background apoptotic scores in the conducting airways
(1.4, 1.4, and 1.8, respectively) than in the small airways (1.0, 1.0, and 1.0 respectively) or the al-
veoli (1.0, 1.0, and 1.0, respectively). The PAI-1-/- and p53-/- smoked mice averages were similar
to the ambient-air exposed control mice (1.6 and 1.4 for conducting airways, 1.0 and 1.0, re-
spectively, for both small airways and alveoli). The WT PCS-treated mice uniformly demon-
strated higher apoptotic scores as compared to WT control cases, and compared to PAI-1-/-

and p53-/- PCS-treated mice for all areas-conducting airways (5.0, 1.6, and 1.4, respectively),
small airways (4.2, 1.0, and 1.0, respectively), and alveoli (4.8, 1.0, and 1.0, respectively). Fig 3A
represents findings that were uniformly demonstrated in each animal of each group. We found
a relative paucity of AEC apoptosis in control WT, PAI-1- and p53-deficient control mice that
were not exposed to PCS and the relatively strong TUNEL-positivity in the airway epithelium
of WT PCSE mice. The data reveals that the AEC apoptosis, considered as an average of airway,
small airway and alveolar findings in each animal, was significantly increased in the lungs of
WT mice exposed to PCS (p<0.005) (Fig 3A).

We next isolated type II AECs from both control and PCS mice and lithium carbonate stain-
ing for inclusion bodies confirmed that the purity of the preparations was>95%. The percent-
age of TUNEL positivity within type II AEC averaged 6.4, 4.12, and 5.4% in the WT, PAI-1-/-,
and p53-/- control cases respectively and averaged 74.2, 6.06, and 5.4% in the WT, PAI-1-/- and
p53-/- animals (n = 5/group) exposed to PCS, respectively. Fig 3B illustrates the relatively nega-
tive staining observed in the control ambient air-exposed WT, p53-/- or PAI-1-/- mice and
PCS-exposed PAI-1-/- or p53-/- mice. Striking positivity occurred in the nuclei of AECs from
each of the PCS-exposed WTmice. These findings are represented in a bar graph in which data
from each mouse is illustrated, showing the uniformity of the responses in each group (n = 5/
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Fig 2. p53-mediated induction of PAI-1 expression contributes to increased pulmonary MPO levels in mice with PCSE. (A) WT mice were exposed to
ambient air (control) or PCS (n = 5/group) for 20 weeks. LL collected from these mice was subjected to total cell counting. (B) Total protein in the lavage was
quantified from the above exposed mice. (C) Paraffin embedded lung sections fromWT, p53- and PAI-1-deficient mice (n = 5mice/group) exposed to ambient
air (control) or PCS for 20 weeks were subjected to H&E staining. Representative fields from 1 of 3 sections per subject are shown at X 400 magnification.
Lung sections were subjected to IHC analysis for neutrophils using anti-MPO antibody and for macrophages using anti-F4/80 antibody. Neutrophils (D) and
macrophages (E) were counted in 10 high-power fields (hpf) are shown as bar graph. (F) Lung homogenate fromWT, p53- and PAI-1-deficient mice exposed
to ambient air or PCS for 20 weeks were immunoblotted for changes in the levels of MPO using anti-MPO antibody. These membranes were later stripped
and analyzed for β-actin to assess loading. Data shown in bar graphs are mean ± SD of two independent experiments (n = 5 mice/group). Differences
between treatments are statistically significant *(P<0.05).

doi:10.1371/journal.pone.0123187.g002
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Fig 3. p53 and PAI-1 are prominently linked to PCSE-induced type II AEC apoptosis. (A) WT, p53- and
PAI-1-deficient mice were exposed to ambient air (control) or PCS for 20 weeks. Lung section obtained from
these mice were subjected to TUNEL staining and the bar graph represents percent apoptosis in these
groups with error bars and significance *(p<0.005) (n = 5 mice/group). (B) Type II AECs isolated fromWT,
p53- and PAI-1-deficient mice as described in methods were subjected to TUNEL staining and the bar graph
represents percent apoptosis in these groups with error bars and significance *(p<0.005) (n = 5 mice/group).
(C) Type II AECs isolated fromWT, p53- and PAI-1-deficient mice were subjected to flow cytometric analysis
after staining with anti-annexin-v antibody and PI to assess apoptosis. NS = the differences are not
statistically significant (n = 5 mice/group). (D) Type II AECs isolated fromWT and p53- and PAI-1-deficient
mice as described above were immunoblotted for SP-C and β-actin as a loading control.

doi:10.1371/journal.pone.0123187.g003
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group, P<0.001). Analysis by flow cytometry after annexin and propidium iodide (PI) staining
further confirmed more type II AEC apoptosis in WTmice with PCSE (Fig 3C). Both p53- and
PAI-1-deficient mice resisted AEC apoptosis. This is supported by decreased SP-C expression
in WT mice exposed PCS when compared to control WT mice or those lacking p53 or PAI-1
expression (Fig 3D).

Mice lacking either expression of p53 or PAI-1 resist PCSE-induced lung inflammation,
which is otherwise increased in WTmice. We found that inhibition of PCSE-mediated induc-
tion of p53 expression and downstream PAI-1 by p53 using caveolin-1 scaffolding peptide
(CSP) [16] significantly suppressed lung inflammation in WTmice. CSP peptide is a stretch of
amino acid residues located in the N-terminus caveolin-1 protein, which has been shown to
serve as a structural scaffold responsible for interactions with many proteins, including en-
zymes involved in cellular signaling [16,17]. On the other hand, those that received a control
peptide (CP) of scrambled sequence showed increased inflammation (Fig 4A). Western blot
analysis for MPO and neutrophil elastase showed that CSP decreased their expression when
compared to CP treated mice exposed to PCS. Next we wanted to check EAR1 level in mice ex-
posed to PCS. EAR1 is an epithelial-derived innate immune protein expressed by type II AECs,
eosinophils, neutrophils and macrophages that may limit viral growth during the early stages
of an infection. Treatment of WT mice with CSP reversed PCSE-induced suppression of EAR1,
while in those exposed to CP after PCSE-injury still showed reduced EAR1 expression (Fig 4B).
Quantitation of neutrophils through IHC analysis of lung sections for MPO antigens showed
increased neutrophil levels in PCS exposed mice, however CSP treated mice showed reduction
in neutrophils compared to those treated with CP (Fig 4C). Further colorimetric analysis of
lung homogenates for MPO activity (Fig 4D) indicated that CSP and not CP reduced PCSE-
mediated accumulation of neutrophils. Since CSP restored EAR1 protein which is otherwise re-
duced after PCSE-induced lung injury, we next analyzed the EAR mRNA levels in those mice.
We found that EAR mRNA levels were decreased in these mice; while CSP but not CP treated
mice reversed the EAR mRNA levels (Fig 4E). Western blotting of lung homogenates indicated
that CSP restored SP-C expression in mice exposed to PCS when compared to those with
PCSE alone or PCSE plus CP (Fig 4F) indicating protection of AECs against apoptosis.

To confirm the specificity of p53-mediated induction of PAI-1 in CS-induced AEC injury,
we blocked CS-induced p53 from binding to PAI-1 mRNA by expressing Ad vector expressing
p53-binding 3’UTR sequence (Fig 5A), which competes with endogenous PAI-1 mRNA for
p53 [18,21]. We found that expression of p53-binding 3’UTR sequences, but not control se-
quences, significantly suppressed CS-induced PAI-1 expression and apoptosis without affect-
ing p53 expression in AECs (Fig 5B). These were otherwise increased after CS induced injury.
Further, EAR1 protein and EAR mRNA expression by AECs were also reduced after CS expo-
sure. These changes were reversed by forced expression of p53-binding 3’UTR but not control
sequences (Fig 5C).

Because epidemiological studies revealed that people with PCSE are several fold more likely
to incur IAV infection than non-exposed subjects [33], we next sought to identify mechanisms
by which PCSE increases susceptibility to IAV-induced injury. We found that WT mice ex-
posed to IAV showed increased p53 and PAI-1 in AECs associated with a parallel increase in
active caspase-3 (Fig 6A), indicating that IAV, like PCSE-induced lung inflammation augments
AEC apoptosis. Further analysis of lung homogenates by western blotting indicated that IAV
infection significantly reduced SP-C expression (Fig 6B). Quantitative analysis of lung sections
of mice exposed to IAV for MPO and macrophage antigens and TUNEL staining indicated in-
creased neutrophil and macrophage accumulation in the lung tissues with induction of AEC
apoptosis (Fig 6C). We next exposed WTmice to IAV and analyzed M2 antigens in lung ho-
mogenates to assess viral load. The responses were compared with mice lacking PAI-1
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Fig 4. CSP inhibits PCSE-induced inducedMPO and neutrophil elastase in mice.WTmice were exposed to ambient air or PCS as described in the
Methods for 5 days per week. After 4 weeks of PCS exposure, mice exposed to PCS were IP injected with or without 18.75 mg/kg body weight of CSP or CP
once every week for 4 more weeks. After 20 weeks of PCS exposure, mice were euthanized. (A) Paraffin embedded lung sections fromWTmice were
subjected to H & E staining. Representative fields from 1 of 3 sections per subject are shown at X 400 magnification. (B) Lung homogenates from these mice
were tested for changes in MPO, neutrophil elastase (NE), EAR1 and β-actin by Western blotting. Densities of individual bands normalized against β-actin
are shown in a bar graph of two independent experiments (n = 5 mice/group). (C) Lung sections of the mice were subjected to IHC analysis using anti-MPO
antibodies. Neutrophils were quantified by counting positive cells in 10 high-power fields (hpf) are shown as bar graph. (D) Lung homogenates fromWTmice
exposed to ambient air or PCS treated with or without CSP or CP were tested for MPO activity by colorimetric assay. (E) Total RNA obtained from the lungs of
these mice were tested for changes in the expression of EAR and β-actin mRNA by RT-PCR. Experiments were repeated at least two times (n = 5 mice/
group). (F) Type II AECs isolated from the mice as described above were immunoblotted for SP-C with β-actin as the loading control.

doi:10.1371/journal.pone.0123187.g004
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expression or transgenic mice that overexpress PAI-1. As shown in Fig 6D, lung homogenates
of WT mice as well as transgenic mice that overexpress PAI-1 expressed M2 antigens indicat-
ing IAV infection following intranasal exposure to IAV. Interestingly, homogenates of mice
lacking PAI-1 expression and exposed to IAV showed relatively minimal M2 antigen expres-
sion compared with corresponding expression levels in WT or transgenic mice. This suggests
that increased PAI-1 expression may foster an increased severity of IAV infection. Similarly,
analyses of lung homogenates of WT and transgenic mice that overexpress PAI-1 indicated
augmented epithelial apoptosis following IAV infection, while those lacking PAI-1 expression
resisted activation of caspase-3. MPO activity in the lung homogenates of WT mice exposed to

Fig 5. (A) Map showing the Ad-vector harboring SP-B promoter plus chimeric luciferase cDNA having either p53-binding (Ad-PAI-170+) or
corresponding control (Ad-PAI-170-) PAI-1 3’UTR sequence. (B) Type II AECs isolated fromWTmice were transduced with Ad-vector alone or Ad-PAI-170
+ or Ad-PAI-170- in vitro. One day after transduction, these cells were either treated with PBS or 1.5% of CS extract (CSE, O.D. = 1.00 at 260 nm = 100%) for
additional 24h. Conditioned media (CM) were tested for changes in PAI-1 and EAR1, and the cell lysates (CL) were immunoblotted for p53, luciferase and
active caspase-3. (C) Total RNA obtained fromWT AECs as described above was analyzed for EARmRNA by RT-PCR. Experiments were repeated at least
two times.

doi:10.1371/journal.pone.0123187.g005
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Fig 6. Increased PAI-1 expression sensitizesmice to IAV infection and alveolar injury. (A) Mice (n = 3) treated with saline or 0.5 LD50 of purified mouse-
adapted IAV (strain A/PR/8/34) in 50 μl by intranasal instillation. LL fluids were analyzed for PAI-1, and isolated type II AECs lysates were immunoblotted for
p53, activation of caspase-3 and β-actin. Data shown in bar graphs are means ± SD of two independent experiments. Differences between treatments are
statistically significant *(P<0.05) (n = 3 mice/group). (B) Mice exposed to saline or IAV as described above were analyzed for SP-C and β-actin. Data shown
in bar graphs are means ± SD of two independent experiments. Differences between treatments are statistically significant *(P<0.05) (n = 3 mice/group). (C)
Lung sections from the mice treated as described above were subjected to IHC analysis for MPO and macrophage antigens, and TUNEL staining to assess
inflammation and apoptosis. Neutrophils, macrophages and apoptotic (TUNEL-positive) cells were quantified by counting positive cells in 10 high-powered
fields (hpf) are shown as bar graph. (D) WT mice or transgenic mice that over express PAI-1 (PAI-1+/+) or PAI-1-deficient mice (PAI-1-/-) were exposed to
50 μl saline or IAV in saline. Lung homogenates were immunoblotted for changes in IAV M2, MPO and active caspase-3 antigen levels to assess severity of
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IAV increased, commensurate with increased inflammation (Fig 6E). In the case of transgenic
mice that overexpress PAI-1, baseline levels of MPO activity was much higher than that of WT
mice. Transgenic PAI-1-overexpressing mice exposed to IAV also showed significantly more
MPO activity in the lungs than corresponding levels in WT mice, while PAI-1-deficient mice
had relatively decreased IAV-induced pulmonary MPO activity. This indicates that increased
PAI-1 expression contributes to inflammation associated with IAV infection.

Further quantification was done using a hemagglutination assay, which revealed a signifi-
cant increase in the viral titer of lung homogenates of WT mice exposed to PCS and IAV com-
pared to the titer of control mice exposed to ambient air infected with IAV (Fig 7A). However,
lung homogenates of PAI-1-deficient mice exposed to PCS plus IAV or ambient air plus IAV
demonstrated no significant difference in viral titers. Further, the severity of IAV infection was
significantly reduced in PAI-1-deficient mice exposed to PCS compared to WT mice with
PCS-induced lung injury. These findings suggest that lung epithelial injury due to PCS-induced
PAI-1 predisposes WT mice to more severe IAV infection. Further we analyzed the lung sec-
tions of mice exposed to ambient air or PCS with or without IAV for lung inflammation, M2
antigens. PCS exposed mice showed increased parenchymal lung neutrophils and macrophages
when compared to control mice in ambient air. We further found that IAV infection increased
the level of neutrophils and macrophages, however the accumulation of neutrophils and mac-
rophages in PCS+IAV infected mice was significantly more than those in ambient air exposed
to IAV. Consistent with increased susceptibility to IAV infection linked to CS exposure in
human subjects [34,35] and in mice [36], we further found that IAV infection induced lung in-
flammation in mice exposed to PCS is associated with significant increases in M2 antigen levels
(Fig 7B). We further analyzed lung sections for p53, PAI-1 and active caspase-3 and all were in-
creased in mice exposed to PCS or IAV, with a maximal response in mice exposed to both PCS
and IAV (Fig 7C). As shown in Fig 7D, we found that IAV infection increased p53 and PAI-1
expression in WTmice. These changes were associated with a significant increase in active cas-
pase-3. Analysis of MPO activity further confirmed that there is increased MPO activity in
PCS mice infected with IAV compared to control mice in ambient air exposed to IAV or con-
trol mice without IAV infection (Fig 7E). Next, in a parallel experiment, to determine whether
PAI-1 is involved in AEC apoptosis and severity of IAV infection, we exposed both WT and
PAI-1-deficient mice to PCS and infected with IAV as described above after which the re-
sponses were compared with mice breathing ambient air which were then exposed to IAV. H &
E staining of lung section of PAI-1-deficient mice showed minimal damage to the lung archi-
tecture. M2 antigen levels in the lung sections of PAI-1-deficient mice were low indicating re-
sistance to IAV infection (Fig 8A). As shown in Fig 8B, we also found significantly less active
caspase-3 in the lung homogenates of PAI-1-deficient mice indicating less IAV-induced lung
inflammation compared to WT mice (Fig 7C). PCSE and/or IAV infection also failed to in-
crease in MPO activity in PAI-1-deficient mice (Fig 8C) compared to the corresponding re-
sponses in WT mice (Fig 7E). PCSE also failed to suppress EAR1 protein and mRNA
expression in PAI-1-deficient mice (Fig 8D and 8E), which is otherwise reduced in WTmice
after PCSE injury (Fig 4B).

IAV infection, inflammation and lung injury. β-actin was tested to gauge similar loading. Bar represents fold changes in the densities of bands (IAV M2)
normalized against β-actin levels in the same sample (n = 3 mice/group). (E) Lung homogenates fromWTmice or transgenic mice that overexpress PAI-1
(PAI-1+/+) or PAI-1-deficient mice (PAI-1-/-) were also tested for MPO activity by colorimetric assay. Data shown in bar graphs are means ± SD of two
independent experiments (n = 3 mice/group).

doi:10.1371/journal.pone.0123187.g006
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Fig 7. Increased IAV infection in mice with PCSE is associated with augmented p53 and PAI-1 expression, and type II AEC apoptosis. (A)Mice
exposed to ambient air (AIR) or PCS were treated with 50 μl saline or IAV in saline via intranasal instillation. One week after IAV infection, these mice were
euthanized. Lungs homogenates were quantified for viral titers using hemagglutination assay. (B)Mice exposed to ambient air (AIR) or PCS were treated
with 50 μl saline or IAV in saline via intranasal instillation. One week after IAV infection, these mice were sacrificed. Sections (5 μM) from the inflated lungs
were subjected to H & E staining, IHC analysis to detect viral protein M2, neutrophil and macrophage staining using specific antibodies. Representative fields
from 1 of 3 sections per subject are shown at X 400 magnification (n = 5 mice/group). The changes in neutrophils, macrophages and M2 levels in the lung
sections were quantified by counting positive cells in 10 high-powered fields (hpf) are shown as bar graph. (C) Mice exposed to ambient air or PCS for 19
weeks were treated with 50 μl saline or 0.5 LD50 of purified IAV in saline through intranasal instillation. One week after IAV infection these mice were
sacrificed. Lung sections were analyzed for changes in p53 and PAI-1 and active caspase-3 antigen levels by IHC. Representative fields from 1 of 3 sections
per subject are shown at X 400 magnification. (D) Lung homogenates were immunoblotted for changes in IAV M2 antigens to assess severity of IAV infection
and also for changes in p53 and PAI-1 expression and active caspase-3 for apoptosis. Bar represents ratios in the densities of bands normalized against β-
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Discussion
Chronic CSE results in a series of inflammatory and organizational responses that contribute
to airway remodeling and emphysematous changes that are often associated with COPD
[37,38]. The damaging effect of CSE/PCSE is a major risk factor throughout the world [39].
AEC apoptosis occurs early in the pathophysiologic events triggered by CSE and is a prelude to
the cascade of events terminating in severe disease [40,41]. COPD affects millions of people
world-wide with acute exacerbations occurring primarily as a result of viral and bacterial
infections.

The inflammatory responses within the lungs occur as a consequence of chronic exposure
of AEC to CS through accumulation of inflammatory cells including neutrophils and macro-
phages. Neutrophils are the major inflammatory cells recruited to the injured lungs in response
to IL-8, which are primarily produced by AECs. Neutrophils produce elastase, matrix metallo-
proteinase’s (MMPs) and cathepsins, all of which often cause increased AEC apoptosis and tis-
sue damage during lung inflammation including that associated with PCSE/CSE. The literature
further suggests that neutrophils attract macrophages to the sites of injury [42–44]. Increased
accumulation of macrophages is observed in the lungs of mice with PCSE, which promotes
lung remodeling via elaboration of MMP-9 and other proteases.

Analysis of the lung sections of patients with COPD revealed that apoptotic AECs in COPD
lungs also express increased levels of p53 and PAI-1 and reduced SP-C. The literature docu-
ments a critical role of increased p53 in the regulation of AEC apoptosis [16–18, 21]. We previ-
ously found that p53 induces expression of PAI-1 in AECs, which in turn contributes to
apoptosis [16, 17, 21]. We also found that mice lacking either p53 or PAI-1 resist PCSE-in-
duced lung injury. In addition, inhibition of p53-mediated induction of PAI-1 by inhibiting
p53 expression using CSP peptide or competitively blocking p53 interaction with specific PAI-
1 mRNA sequences inhibits PAI-1 expression and apoptosis of AECs [16, 17, 21].

PAI-1 has been strongly implicated in the fibrinolytic defect that characteristically occurs in
animals and humans with a variety of lung injuries [45, 46] and is induced in the plasma of
smokers [15]. The findings we now report extend understanding of the role of PAI-1 in lung
inflammation induced by PCSE and indicate that PAI-1 regulates the extent of epithelial and
overall lung inflammation associated with PCSE. Here we report that both p53 and PAI-1 ex-
pression are induced in AECs by PCSE, that PAI-1 is a downstream mediator of p53-induced
lung inflammation and that PAI-1 augments lung inflammation associated with PCSE. The lit-
erature [47] suggests that inhibition of apoptosis of neutrophils as well as suppression of
phagocytosis of apoptotic neutrophils by increased PAI-1 contributes to their accumulation in
injured lungs leading to inflammation. Consistent with these observations, we found that PAI-
1-deficient mice resist inflammation that is otherwise increased in WT mice after PCSE-in-
duced lung injury. While we did not find evidence of emphysematous change in our model due
to the short period of PCSE, we found that PCSE-induced inflammatory changes included in-
creased lung macrophages and neutrophils and an increased LL protein content.

IAV is a major respiratory pathogen that can cause severe viral pneumonia and which can
be complicated by secondary bacterial pneumonia. It has been demonstrated that chronic CS
exposure increases the incidence and severity of IAV infection, as indicated by increased viral
titers in mice with CSE [34, 35, 36, 48, 49]. AECs are the primary targets for both CS and IAV
infection as they are exposed to outer environment. Our data show that IAV infection induces

actin levels in the same sample (n = 5 mice/group). (E) Lung homogenates were tested for MPO activity by colorimetric assay which are represented as bar a
graph of two independent experiments (n = 5 mice/group).

doi:10.1371/journal.pone.0123187.g007
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Fig 8. Mice lacking PAI-1 expression resist type II AEC apoptosis.Mice in ambient AIR or exposed to PCS were treated with 50 μl saline or purified IAV
in saline via intranasal instillation. One week after IAV infection, the mice were sacrificed. (A) Lung sections were subjected to H & E and IHC staining for M2
antigen. Representative fields from 1 of 3 sections per subject are shown at X 400 magnification (n = 5 mice/group). (B) Lung homogenates were
immunoblotted for changes in IAV M2 and active caspase-3antigens to assess severity of IAV infection and apoptosis respectively. The plot represents ratios
in the densities of bands normalized against β-actin levels in the same sample (n = 5 mice/group). (C) Lung homogenates were tested for MPO activity by
colorimetric assay and represented as a bar graph of two independent experiments (n = 5 mice/group). (D) Lung homogenates from the mice in ambient AIR
or exposed to PCS for 20 weeks were immunoblotted for changes in EAR1 with β-actin antibody as a loading control. (E) Total RNA from the mice exposed to
AIR or PCS was analyzed for EAR and β-actin mRNA (n = 5 mice/group).

doi:10.1371/journal.pone.0123187.g008
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both p53 and PAI-1 expression and apoptosis in AECs. This is consistent with and extends an
earlier report where IAV induced apoptotic cell death was causally linked to IAV-induced p53
expression [50, 51]. Based on a number of reports, apoptosis of AECs may promote IAV repli-
cation [52,53]. The present study shows that PCS exposure and IAV infection additively in-
crease lung inflammation due to induction of PAI-1 expression. It is unclear how increased
PAI-1 during PCSE-induced lung inflammation augments severity of IAV infection. Our stud-
ies also demonstrate that increased PAI-1 due to PCSE inhibits EAR1, a member of the RNase
A which has potent bactericidal, helminthotoxic, and antiviral properties [54, 55]. Increased
IAV infection found after PCSE appears to be associated with suppression of host defense
protein, EAR1 by increased PAI-1 in AECs. These studies to our knowledge are the first, to
demonstrate that PAI-1 induced during PCSE-induced lung inflammation potentiates IAV-in-
duced cell death.

In summary, this report documents that increased p53 and PAI-1 expression and apoptosis
in AECs occur with accumulation of leukocytes in the lungs of patients with COPD, a disease
that is promoted by CSE/PCSE. p53 and PAI-1 expression and apoptosis were likewise in-
creased in AECs as was lung inflammation in WT mice. Those lacking p53 or PAI-1 resisted
AEC apoptosis and lung inflammation, demonstrating that upregulation of PAI-1 by p53 is
central to the pathogenesis of epithelial injury in PCSE. Epithelial apoptosis was reversible by
interventions that block increased p53 and PAI-1 in AECs, including CSP or by competitive in-
hibition of the binding of p53 to PAI-1 mRNA with p53-binding 3’UTR sequences of PAI-1
mRNA. IAV infection increases p53, PAI-1 and apoptosis in AECs with pulmonary inflamma-
tion and additively worsened lung inflammation induced by PCSE. Viral burden was directly
associated with increased PAI-1 levels in transgenic PAI-1 overexpressing mice and reduced in
those lacking PAI-1. Our findings document that PAI-1 expression is increased by PCSE, pro-
motes lung inflammation, AEC apoptosis and exacerbates lung inflammation induced by sub-
sequent exposure to IAV.
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