118 research outputs found

    Le mélanome primitif de la muqueuse génitale féminine: à propos de trois observations et revue de littérature

    Get PDF
    Le mélanome malin primitif de l'appareil génital féminin est une tumeur extrêmement rare. Il est fréquemment observé au niveau de la vulve mais il est rare au niveau du col utérin et du vagin. Il est le plus souvent   diagnostiqué à un stade tardif à l'occasion de métrorragies ou de massetumorale. Son histogénèse a été longtemps débattue. Le diagnostic est anatomo-pathologique avec recours nécessaire à l'étude   immunohistochimique. Sa prise en charge n'est pas codifiée avec plusieurs thérapeutiques proposées notamment dans le mélanome métastatique.Son pronostic est désastreux, associé à un taux élevé de récidives et à une courte survie. Les auteurs présentent trois observations, de  mélanomes primitifs vaginal, vulvaire et cervical, chez trois patientes âgées  respectivement de 70, 65 et 40 ans. Et à travers ces observations, ils mettent en relief les principaux aspects cliniques, histologiques, thérapeutiques de cette entité avec une revue de la littérature

    Multifragmentation of a very heavy nuclear system (I): Selection of single-source events

    Full text link
    A sample of `single-source' events, compatible with the multifragmentation of very heavy fused systems, are isolated among well-measured 155Gd+natU 36AMeV reactions by examining the evolution of the kinematics of fragments with Z>=5 as a function of the dissipated energy and loss of memory of the entrance channel. Single-source events are found to be the result of very central collisions. Such central collisions may also lead to multiple fragment emission due to the decay of excited projectile- and target-like nuclei and so-called `neck' emission, and for this reason the isolation of single-source events is very difficult. Event-selection criteria based on centrality of collisions, or on the isotropy of the emitted fragments in each event, are found to be inefficient to separate the two mechanisms, unless they take into account the redistribution of fragments' kinetic energies into directions perpendicular to the beam axis. The selected events are good candidates to look for bulk effects in the multifragmentation process.Comment: 39 pages including 15 figures; submitted to Nucl. Phys.

    Multifragmentation of a very heavy nuclear system (II): bulk properties and spinodal decomposition

    Full text link
    The properties of fragments and light charged particles emitted in multifragmentation of single sources formed in central 36AMeV Gd+U collisions are reviewed. Most of the products are isotropically distributed in the reaction c.m. Fragment kinetic energies reveal the onset of radial collective energy. A bulk effect is experimentally evidenced from the similarity of the charge distribution with that from the lighter 32AMeV Xe+Sn system. Spinodal decomposition of finite nuclear matter exhibits the same property in simulated central collisions for the two systems, and appears therefore as a possible mechanism at the origin of multifragmentation in this incident energy domain.Comment: 28 pages including 14 figures; submitted to Nucl. Phys.

    Schedule-dependent activity of 5-fluorouracil and irinotecan combination in the treatment of human colorectal cancer: in vitro evidence and a phase I dose-escalating clinical trial

    Get PDF
    Several schedules of 5-fluorouracil (FU) and irinotecan (IRI) have been shown to improve overall survival in advanced colorectal cancer (CRC). Preclinical evidence suggests that the sequential administration of IRI and FU produces synergistic activity, although their clinical use has not been fully optimised. We investigated the interaction between short-term exposure to SN-38, the active metabolite of IRI, and prolonged exposure to FU in human CRC HT-29 cells and observed that the synergism of action between the two agents can be increased by extending the time of cell exposure to FU and reducing the interval between administration of the two agents. Based on these findings, we performed a phase I trial in 25 advanced CRC patients using a modified IRI/FU regimen as first-line therapy and evaluated three dose levels of IRI (150–300 mg/m2) and two of continuous infusion of FU (800–1000 mg/m2) in a 3-weekly schedule. The most severe grade III–IV toxicities were neutropoenia in four cycles and diarrhoea in three. One patient achieved complete response (4%), 12 a partial response (48%), the overall response rate was 52% (±20, 95% CI); seven of 25 patients had stable disease (28%), the overall disease control was 80% (±16, 95% CI). This modified IRI/FU schedule is feasible and exhibits potentially interesting clinical activity

    Emission time scale of light particles in the system Xe+Sn at 50 AMeV. A probe for dynamical emission ?

    Full text link
    Proton and deuteron correlation functions have been investigated with both impact parameter and emission source selections. The correlations of the system (129Xe + natSn) at 50 AMeV have been measured with the 4 pi INDRA which provides a complete kinematical description of each event. The emission time scale analyzed with a quantum model reveals the time sequence of the light particles emitted by the projectile-like fragment. The short and constant emission time of the proton, independent of the impact parameter, can be attributed to a preequilibrium process.Comment: 20 pages, with 11 included figures; Accepted by European Physics Journal

    CUBES: a UV spectrograph for the future

    Get PDF
    In spite of the advent of extremely large telescopes in the UV/optical/NIR range, the current generation of 8-10m facilities is likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000, although a lower-resolution, sky-limited mode of R ~ 7,000 is also planned. CUBES will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the Phase B dedicated to detailed design and construction. First science operations are planned for 2028. In this paper, we briefly describe the CUBES project development and goals, the main science cases, the instrument design and the project organization and management
    • …
    corecore