836 research outputs found
Reconstruction of Causal Networks by Set Covering
We present a method for the reconstruction of networks, based on the order of
nodes visited by a stochastic branching process. Our algorithm reconstructs a
network of minimal size that ensures consistency with the data. Crucially, we
show that global consistency with the data can be achieved through purely local
considerations, inferring the neighbourhood of each node in turn. The
optimisation problem solved for each individual node can be reduced to a Set
Covering Problem, which is known to be NP-hard but can be approximated well in
practice. We then extend our approach to account for noisy data, based on the
Minimum Description Length principle. We demonstrate our algorithms on
synthetic data, generated by an SIR-like epidemiological model.Comment: Under consideration for the ECML PKDD 2010 conferenc
Discovery of stable and significant binding motif pairs from PDB complexes and protein interaction datasets
Motivation: Discovery of binding sites is important in the study of protein-protein interactions. In this paper, we introduce stable and significant motif pairs to model protein-binding sites. The stability is the pattern's resistance to some transformation. The significance is the unexpected frequency of occurrence of the pattern in a sequence dataset comprising known interacting protein pairs. Discovery of stable motif pairs is an iterative process, undergoing a chain of changing but converging patterns. Determining the starting point for such a chain is an interesting problem. We use a protein complex dataset extracted from the Protein Data Bank to help in identifying those starting points, so that the computational complexity of the problem is much released. Results: We found 913 stable motif pairs, of which 765 are significant. We evaluated these motif pairs using comprehensive comparison results against random patterns. Wet-experimentally discovered motifs reported in the literature were also used to confirm the effectiveness of our method. © Oxford University Press 2004; all rights reserved
Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states
The Notch signaling pathway consists of multiple types of receptors and ligands, whose interactions can be tuned by Fringe glycosyltransferases. A major challenge is to determine how these components control the specificity and directionality of Notch signaling in developmental contexts. Here, we analyzed same-cell (cis) Notch-ligand interactions for Notch1, Dll1, and Jag1, and their dependence on Fringe protein expression in mammalian cells. We found that Dll1 and Jag1 can cis-inhibit Notch1, and Fringe proteins modulate these interactions in a way that parallels their effects on trans interactions. Fringe similarly modulated Notch-ligand cis interactions during Drosophila development. Based on these and previously identified interactions, we show how the design of the Notch signaling pathway leads to a restricted repertoire of signaling states that promote heterotypic signaling between distinct cell types, providing insight into the design principles of the Notch signaling system, and the specific developmental process of Drosophila dorsal-ventral boundary formation
Dynamic Ligand Discrimination in the Notch Signaling Pathway
The Notch signaling pathway comprises multiple ligands that are used in distinct biological contexts. In principle, different ligands could activate distinct target programs in signal-receiving cells, but it is unclear how such ligand discrimination could occur. Here, we show that cells use dynamics to discriminate signaling by the ligands Dll1 and Dll4 through the Notch1 receptor. Quantitative single-cell imaging revealed that Dll1 activates Notch1 in discrete, frequency-modulated pulses that specifically upregulate the Notch target gene Hes1. By contrast, Dll4 activates Notch1 in a sustained, amplitude-modulated manner that predominantly upregulates Hey1 and HeyL. Ectopic expression of Dll1 or Dll4 in chick neural crest produced opposite effects on myogenic differentiation, showing that ligand discrimination can occur in vivo. Finally, analysis of chimeric ligands suggests that ligand-receptor clustering underlies dynamic encoding of ligand identity. The ability of the pathway to utilize ligands as distinct communication channels has implications for diverse Notch-dependent processes
Scattering Theory of Mesoscopic Detectors
We consider a two-level system coupled to a mesoscopic two-terminal conductor
that acts as measuring device. As a convenient description of the conductor we
introduce its scattering matrix. We show how its elements can be used to
calculate the relaxation and decoherence rates of the two-level system. Special
emphasis is laid on the charge screening in the conductor that becomes
important in the many-channel limit. Finally we give some examples that
illustrate charge screening in different limits.Comment: contribution to the ECOSS-21 proceedings in a special issue of
SURFACE SCIENC
Rules for biological regulation based on error minimization
The control of gene expression involves complex mechanisms that show large
variation in design. For example, genes can be turned on either by the binding
of an activator (positive control) or the unbinding of a repressor (negative
control). What determines the choice of mode of control for each gene? This
study proposes rules for gene regulation based on the assumption that free
regulatory sites are exposed to nonspecific binding errors, whereas sites bound
to their cognate regulators are protected from errors. Hence, the selected
mechanisms keep the sites bound to their designated regulators for most of the
time, thus minimizing fitness-reducing errors. This offers an explanation of
the empirically demonstrated Savageau demand rule: Genes that are needed often
in the natural environment tend to be regulated by activators, and rarely
needed genes tend to be regulated by repressors; in both cases, sites are bound
for most of the time, and errors are minimized. The fitness advantage of error
minimization appears to be readily selectable. The present approach can also
generate rules for multi-regulator systems. The error-minimization framework
raises several experimentally testable hypotheses. It may also apply to other
biological regulation systems, such as those involving protein-protein
interactions.Comment: biological physics, complex networks, systems biology,
transcriptional regulation
http://www.weizmann.ac.il/complex/tlusty/papers/PNAS2006.pdf
http://www.pnas.org/content/103/11/3999.ful
Quantum-Limited Measurement and Information in Mesoscopic Detectors
We formulate general conditions necessary for a linear-response detector to
reach the quantum limit of measurement efficiency, where the
measurement-induced dephasing rate takes on its minimum possible value. These
conditions are applicable to both non-interacting and interacting systems. We
assess the status of these requirements in an arbitrary non-interacting
scattering based detector, identifying the symmetries of the scattering matrix
needed to reach the quantum limit. We show that these conditions are necessary
to prevent the existence of information in the detector which is not extracted
in the measurement process.Comment: 13 pages, 1 figur
Continuous weak measurement of quantum coherent oscillations
We consider the problem of continuous quantum measurement of coherent
oscillations between two quantum states of an individual two-state system. It
is shown that the interplay between the information acquisition and the
backaction dephasing of the oscillations by the detector imposes a fundamental
limit, equal to 4, on the signal-to-noise ratio of the measurement. The limit
is universal, e.g., independent of the coupling strength between the detector
and system, and results from the tendency of quantum measurement to localize
the system in one of the measured eigenstates
- …
