299 research outputs found

    Ricin trafficking in cells

    Get PDF
    The heterodimeric plant toxin ricin binds exposed galactosyls at the cell surface of target mammalian cells, and, following endocytosis, is transported in vesicular carriers to the endoplasmic reticulum (ER). Subsequently, the cell-binding B chain (RTB) and the catalytic A chain (RTA) are separated reductively, RTA embeds in the ER membrane and then retrotranslocates (or dislocates) across this membrane. The protein conducting channels used by RTA are usually regarded as part of the ER-associated protein degradation system (ERAD) that removes misfolded proteins from the ER for destruction by the cytosolic proteasomes. However, unlike ERAD substrates, cytosolic RTA avoids destruction and folds into a catalytic conformation that inactivates its target ribosomes. Protein synthesis ceases, and subsequently the cells die apoptotically. This raises questions about how this protein avoids the pathways that are normally sanctioned for ER-dislocating substrates. In this review we focus on the molecular events that occur with non-tagged ricin and its isolated subunits at the ER–cytosol interface. This focus reveals that intra-membrane interactions of RTA may control its fate, an area that warrants further investigation

    Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways

    Get PDF
    Rab family guanosine triphosphatases (GTPases) together with their regulators define specific pathways of membrane traffic within eukaryotic cells. In this study, we have investigated which Rab GTPase-activating proteins (GAPs) can interfere with the trafficking of Shiga toxin from the cell surface to the Golgi apparatus and studied transport of the epidermal growth factor (EGF) from the cell surface to endosomes. This screen identifies 6 (EVI5, RN-tre/USP6NL, TBC1D10A–C, and TBC1D17) of 39 predicted human Rab GAPs as specific regulators of Shiga toxin but not EGF uptake. We show that Rab43 is the target of RN-tre and is required for Shiga toxin uptake. In contrast, RabGAP-5, a Rab5 GAP, was unique among the GAPs tested and reduced the uptake of EGF but not Shiga toxin. These results suggest that Shiga toxin trafficking to the Golgi is a multistep process controlled by several Rab GAPs and their target Rabs and that this process is discrete from ligand-induced EGF receptor trafficking

    Retrograde transport pathways utilised by viruses and protein toxins

    Get PDF
    A model has been presented for retrograde transport of certain toxins and viruses from the cell surface to the ER that suggests an obligatory interaction with a glycolipid receptor at the cell surface. Here we review studies on the ER trafficking cholera toxin, Shiga and Shiga-like toxins, Pseudomonas exotoxin A and ricin, and compare the retrograde routes followed by these protein toxins to those of the ER trafficking SV40 and polyoma viruses. We conclude that there is in fact no obligatory requirement for a glycolipid receptor, nor even with a protein receptor in a lipid-rich environment. Emerging data suggests instead that there is no common pathway utilised for retrograde transport by all of these pathogens, the choice of route being determined by the particular receptor utilised

    The proteasome cap RPT5/Rpt5p subunit prevents aggregation of unfolded ricin A chain

    Get PDF
    The plant cytotoxin ricin enters mammalian cells by receptor-mediated endocytosis, undergoing retrograde transport to the endoplasmic reticulum (ER) where its catalytic A chain (RTA) is reductively separated from the holotoxin to enter the cytosol and inactivate ribosomes. The currently accepted model is that the bulk of ER-dislocated RTA is degraded by proteasomes. We show here that the proteasome has a more complex role in ricin intoxication than previously recognised, that the previously reported increase in sensitivity of mammalian cells to ricin in the presence of proteasome inhibitors simply reflects toxicity of the inhibitors themselves, and that RTA is a very poor substrate for proteasomal degradation. Denatured RTA and casein compete for a binding site on the regulatory particle of the 26S proteasome, but their fates differ. Casein is degraded, but the mammalian 26S proteasome AAA-ATPase subunit RPT5 acts as a chaperone that prevents aggregation of denatured RTA and stimulates recovery of catalytic RTA activity in vitro. Furthermore, in vivo, the ATPase activity of Rpt5p is required for maximal toxicity of RTA dislocated from the Saccharomyces cerevisiae ER. Our results implicate RPT5/Rpt5p in the triage of substrates in which either activation (folding) or inactivation (degradation) pathways may be initiated

    Folding-competent and folding-defective forms of Ricin A chain have different fates following retrotranslocation from the endoplasmic reticulum

    Get PDF
    We report that a toxic polypeptide retaining the potential to refold upon dislocation from the endoplasmic reticulum (ER) to the cytosol (ricin A chain; RTA) and a misfolded version that cannot (termed RTAΔ), follow ER-associated degradation (ERAD) pathways in Saccharomyces cerevisiae that substantially diverge in the cytosol. Both polypeptides are dislocated in a step mediated by the transmembrane Hrd1p ubiquitin ligase complex and subsequently degraded. Canonical polyubiquitylation is not a prerequisite for this interaction because a catalytically inactive Hrd1p E3 ubiquitin ligase retains the ability to retrotranslocate RTA, and variants lacking one or both endogenous lysyl residues also require the Hrd1p complex. In the case of native RTA, we established that dislocation also depends on other components of the classical ERAD-L pathway as well as an ongoing ER–Golgi transport. However, the dislocation pathways deviate strikingly upon entry into the cytosol. Here, the CDC48 complex is required only for RTAΔ, although the involvement of individual ATPases (Rpt proteins) in the 19S regulatory particle (RP) of the proteasome, and the 20S catalytic chamber itself, is very different for the two RTA variants. We conclude that cytosolic ERAD components, particularly the proteasome RP, can discriminate between structural features of the same substrate

    Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking

    Get PDF
    The oxidative cyclisation of a range of benzothieno[2,3-d]pyrimidine hydrazones (7a–j) to the 1,2,4-triazolo[4,3-c]pyrimidines (8a–j) catalysed by lithium iodide or to the 1,2,4-triazolo[1,5-c]pyrimidines (10a–j) with sodium carbonate is presented. A complementary synthesis of the 1,2,4-triazolo[1,5-c]pyrimidines starting from the amino imine 11 is also reported. The effect of these compounds on Shiga toxin (STx) trafficking in HeLa cells and comparison to the previously reported Exo2 is also detailed

    Fine tuning Exo2, a small molecule inhibitor of secretion and retrograde trafficking pathways in mammalian cells

    Get PDF
    The small molecule 4-hydroxy-3-methoxybenzaldehyde (5,6,7,8-tetrahydro[1]benzothieno[2,3- d]pyrimidin-4-yl)hydrazone (Exo2) stimulates morphological changes at the mammalian Golgi and trans-Golgi network that are virtually indistinguishable from those induced by brefeldin A. Both brefeldin A and Exo2 protect cells from intoxication by Shiga(-like) toxins by acting on other targets that operate at the early endosome, but do so at the cost of high toxicity to target cells. The advantage of Exo2 is that it is much more amenable to chemical modification and here we report a range of Exo2 analogues produced by modifying the tetrahydrobenzothienopyrimidine core, the vanillin moiety and the hydrazone bond that links these two. These compounds were examined for the morphological changes they stimulated at the Golgi stack, the trans Golgi network and the transferrin receptor-positive early endosomes and this activity correlated with their inherent toxicity towards the protein manufacturing ability of the cell and their protective effect against toxin challenge. We have developed derivatives that can separate organelle morphology, target specificity, innate toxicity and toxin protection. Our results provide unique compounds with low toxicity and enhanced specificity to unpick the complexity of membrane trafficking networks

    A human embryonic kidney 293T cell line mutated at the Golgi -mannosidase II locus

    Get PDF
    Disruption of Golgi -mannosidase II activity can result in type II congenital dyserythropoietic anemia and can induce lupus-like autoimmunity in mice. Here, we isolate a mutant human embryonic kidney (HEK) 293T cell line, called Lec36, that displays sensitivity to ricin that lies between the parental HEK 293T cells, whose secreted and membrane-expressed proteins are dominated by complex-type glycosylation, and 293S Lec1 cells, which only produce oligomannose-type N-linked glycans. The stem cell marker, 19A, was transiently expressed in the HEK 293T Lec36 cells, and in parental HEK 293T cells with and without the potent Golgi -mannosidase II inhibitor, swainsonine. Negative-ion nano-electrospray ionization mass spectra of the 19A N-linked glycans from HEK 293T Lec36 and swainsonine-treated HEK 293T cells were qualitatively indistinguishable and, as shown by collision-induced dissociation spectra, dominated by hybrid-type glycosylation. Nucleotide sequencing revealed mutations in each allele of MAN2A1, the gene encoding Golgi -mannosidase II: a point mutation in one allele mapping to the active site and an in-frame deletion of twelve-nucleotides in the other. Expression of wild-type but not the mutant MAN2A1 alleles in Lec36 cells restored processing of the 19A reporter glycoprotein to complex-type glycosylation. The Lec36 cell line will be useful for expressing therapeutic glycoproteins with hybrid-type glycans and provides a sensitive host for detecting mutations in human MAN2A1 causing type II congenital dyserythropoietic anemia

    The secretion inhibitor Exo2 perturbs trafficking of Shiga toxin between endosomes and the trans-Golgi network

    Get PDF
    The small-molecule inhibitor Exo2 {4-hydroxy-3-methoxy-(5,6,7,8-tetrahydrol[1]benzothieno[2,3-d]pyrimidin-4-yl)hydraz-one benzaldehyde} has been reported to disrupt the Golgi apparatus completely and to stimulate Golgi–ER (endoplasmic reticulum) fusion in mammalian cells, akin to the well-characterized fungal toxin BFA (brefeldin A). It has also been reported that Exo2 does not affect the integrity of the TGN (trans-Golgi network), or the direct retrograde trafficking of the glycolipid-binding cholera toxin from the TGN to the ER lumen. We have examined the effects of BFA and Exo2, and found that both compounds are indistinguishable in their inhibition of anterograde transport and that both reagents significantly disrupt the morphology of the TGN in HeLa and in BS-C-1 cells. However, Exo2, unlike BFA, does not induce tubulation and merging of the TGN and endosomal compartments. Furthermore, and in contrast with its effects on cholera toxin, Exo2 significantly perturbs the delivery of Shiga toxin to the ER. Together, these results suggest that the likely target(s) of Exo2 operate at the level of the TGN, the Golgi and a subset of early endosomes, and thus Exo2 provides a more selective tool than BFA for examining membrane trafficking in mammalian cells

    Binary solvent system used to fabricate fully annealing-free perovskite solar cells

    Get PDF
    High temperature post-deposition annealing of hybrid lead halide perovskite thin films—typically lasting at least 10 min—dramatically limits the maximum roll-to-roll coating speed, which determines solar module manufacturing costs. While several approaches for “annealing-free” perovskite solar cells (PSCs) have been demonstrated, many are of limited feasibility for scalable fabrication. Here, this work has solvent-engineered a high vapor pressure solvent mixture of 2-methoxy ethanol and tetrahydrofuran to deposit highly crystalline perovskite thin-films at room temperature using gas-quenching to remove the volatile solvents. Using this approach, this work demonstrates p-i-n devices with an annealing-free MAPbI3 perovskite layer achieving stabilized power conversion efficiencies (PCEs) of up to 18.0%, compared to 18.4% for devices containing an annealed perovskite layer. This work then explores the deposition of self-assembled molecules as the hole-transporting layer without annealing. This work finally combines the methods to create fully annealing-free devices having stabilized PCEs of up to 17.1%. This represents the state-of-the-art for annealing-free fabrication of PSCs with a process fully compatible with roll-to-roll manufacture
    corecore