61 research outputs found

    Recovery of nitrogen cycling in riparian zones after stream restoration using δ15N along a 25-year chronosequence in northern Sweden

    Get PDF
    Swedish boreal streams were modified to transport timber by pushing boulders to stream sides, creating levees that disconnected streams from riparian areas. Many streams have since been restored and our goal was to understand how this affects riparian nitrogen (N) cycling.We compared the natural abundance of delta N-15 isotopes in foliage and roots of Filipendula ulmaria plus soils and litter along streams restored 2-25 years ago. We measured sources of N, potential immobilization of N, namely plant diversity and biomass, and the amount and sources of carbon (C) to determine if these were important for describing riparian N cycling.The delta N-15 of F. ulmaria foliage changed dramatically just after restoration compared to the channelized, disconnected state and then converged over the next 25 years with the steady-state reference.The disturbance and reconnection of the stream with the riparian zone during restoration created a short-term pulse of N availability and gaseous losses of N as a result of enhanced microbial processing of N. With increasing time since restoration, N availability appears to have decreased, and N sources changed to those derived from mycorrhizae, amino acids, or the humus layer, or there was enhanced N-use efficiency by older, more diverse plant communities

    Patch-Burn Grazing Impacts Forage Resources in Subtropical Humid Grazing Lands

    Get PDF
    Subtropical humid grazing lands represent a large global land use and are important for livestock production, as well as supplying multiple ecosystem services. Patch-burn grazing (PBG) management is applied in temperate grazing lands to enhance environmental and economic sustainability; however, this management system has not been widely tested in subtropical humid grazing lands. The objective of this study was to determine how PBG affected forage resources, in comparison with the business-as-usual full-burn (FB) management in both intensively managed pastures (IMP) and seminative (SN) pastures in subtropical humid grazinglands. We hypothesized that PBG management would create patch contrasts in forage quantity and nutritive value in both IMP and SN pastures, with a greater effect in SN pastures. A randomized block design experiment was established in 2017 with 16 pastures (16 ha each), 8 each in IMP and SN at Archbold Biological Station\u27s Buck Island Ranch in Florida. PBG management employed on IMP and SN resulted in creation of patch contrast in forage nutritive value and biomass metrics, and recent fire increased forage nutritive value. Residual standing biomass was significantly lower in burned patches of each year, creating heterogeneity within both pasture types under PBG. PBG increased digestible forage production in SN but not IMP pastures. These results suggest that PBG may be a useful management tool for enhancing forage nutritive value and creating patch contrast in both SN and IMP, but PBG does not necessarily increase production relative to FB management. The annual increase in tissue quality and digestible forage production in a PBG system as opposed to once every 3 yr in an FB system is an important consideration for ranchers. Economic impacts of PBG and FB management in the two different pasture types are discussed, and we compare and contrast results from subtropical humid grazing lands with continental temperate grazing lands

    A novel MC1R allele for black coat colour reveals the Polynesian ancestry and hybridization patterns of Hawaiian feral pigs

    Get PDF
    Pigs (Sus scrofa) have played an important cultural role in Hawaii since Polynesians first introduced them in approximately AD 1200. Additional varieties of pigs were introduced following Captain Cook’s arrival in Hawaii in 1778 and it has been suggested that the current pig population may descend primarily, or even exclusively, from European pigs. Although populations of feral pigs today are an important source of recreational hunting on all of the major islands, they also negatively impact native plants and animals. As a result, understanding the origins of these feral pig populations has significant ramifications for discussions concerning conservation management, identity and cultural continuity on the islands. Here, we analysed a neutral mitochondrial marker and a functional nuclear coat colour marker in 57 feral Hawaiian pigs. Through the identification of a new mutation in the MC1R gene that results in black coloration, we demonstrate that Hawaiian feral pigs are mostly the descendants of those originally introduced during Polynesian settlement, though there is evidence for some admixture. As such, extant Hawaiian pigs represent a unique historical lineage that is not exclusively descended from feral pigs of European originPeer reviewe

    Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree

    Get PDF
    It is increasingly recognized that macro-organisms (corals, insects, plants, vertebrates) consist of both host tissues and multiple microbial symbionts that play essential roles in their host’s ecological and evolutionary success. Consequently, identifying benefits and costs of symbioses, as well as mechanisms underlying them are research priorities. All plants surveyed under natural conditions harbor foliar endophytic fungi (FEF) in their leaf tissues, often at high densities. Despite producing no visible effects on their hosts, experiments have nonetheless shown that FEF reduce pathogen and herbivore damage. Here, combining results from three genomic, and two physiological experiments, we demonstrate pervasive genetic and phenotypic effects of the apparently asymptomatic endophytes on their hosts. Specifically, inoculation of endophyte-free (E−) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant FEF species in healthy T. cacao, induces consistent changes in the expression of hundreds of host genes, including many with known defensive functions. Further, E+ plants exhibited increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes. These phenotypic changes observed in E+ plants correspond to changes in expression of specific functional genes in related pathways. Moreover, a cacao gene (Tc00g04254) highly up-regulated by C. tropicale also confers resistance to pathogen damage in the absence of endophytes or their products in host tissues. Thus, the benefits of increased pathogen resistance in E+ plants are derived in part from up-regulation of intrinsic host defense responses, and appear to be offset by potential costs including reduced photosynthesis, altered host nitrogen metabolism, and endophyte heterotrophy of host tissues. Similar effects are likely in most plant-endophyte interactions, and should be recognized in the design and interpretation of genetic and phenotypic studies of plantsIt is increasingly recognized that macro-organisms (corals, insects, plants, vertebrates) consist of both host tissues and multiple microbial symbionts that play essential roles in their host’s ecological and evolutionary success. Consequently, identifying benefits and costs of symbioses, as well as mechanisms underlying them are research priorities. All plants surveyed under natural conditions harbor foliar endophytic fungi (FEF) in their leaf tissues, often at high densities. Despite producing no visible effects on their hosts, experiments have nonetheless shown that FEF reduce pathogen and herbivore damage. Here, combining results from three genomic, and two physiological experiments, we demonstrate pervasive genetic and phenotypic effects of the apparently asymptomatic endophytes on their hosts. Specifically, inoculation of endophyte-free (E−) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant FEF species in healthy T. cacao, induces consistent changes in the expression of hundreds of host genes, including many with known defensive functions. Further, E+ plants exhibited increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes. These phenotypic changes observed in E+ plants correspond to changes in expression of specific functional genes in related pathways. Moreover, a cacao gene (Tc00g04254) highly up-regulated by C. tropicale also confers resistance to pathogen damage in the absence of endophytes or their products in host tissues. Thus, the benefits of increased pathogen resistance in E+ plants are derived in part from up-regulation of intrinsic host defense responses, and appear to be offset by potential costs including reduced photosynthesis, altered host nitrogen metabolism, and endophyte heterotrophy of host tissues. Similar effects are likely in most plant-endophyte interactions, and should be recognized in the design and interpretation of genetic and phenotypic studies of plant

    The Contribution of Advective Fluxes to Net Ecosystem Exchange in a High-Elevation, Subalpine Forest

    Full text link
    The eddy covariance technique, which is used in the determination of net ecosystem CO2 exchange (NEE), is subject to significant errors when advection that carries CO2 in the mean flow is ignored. We measured horizontal and vertical advective CO2 fluxes at the Niwot Ridge AmeriFlux site (Colorado, USA) using a measurement approach consisting of multiple towers. We observed relatively high rates of both horizontal (Fhadv) and vertical (Fvadv) advective fluxes at low surface friction velocities (u*) which were associated with downslope katabatic flows. We observed that Fhadv was confined to a relatively thin layer (0–6 m thick) of subcanopy air that flowed beneath the eddy covariance sensors principally at night, carrying with it respired CO2 from the soil and lower parts of the canopy. The observed Fvadv came from above the canopy and was presumably due to the convergence of drainage flows at the tower site. The magnitudes of both Fhadv and Fvadv were similar, of opposite sign, and increased with decreasing u*, meaning that they most affected estimates of the total CO2 flux on calm nights with low wind speeds. The mathematical sign, temporal variation and dependence on u* of both Fhadv and Fvadv were determined by the unique terrain of the Niwot Ridge site. Therefore, the patterns we observed may not be broadly applicable to other sites. We evaluated the influence of advection on the cumulative annual and monthly estimates of the total CO2 flux (Fc), which is often used as an estimate of NEE, over six years using the dependence of Fhadv and Fvadv on u*. When the sum of Fhadv and Fvadv was used to correct monthly Fc, we observed values that were different from the monthly Fc calculated using the traditional u*-filter correction by -16 to 20 g C·m-2·mo-1; the mean percentage difference in monthly Fc for these two methods over the six-year period was 10%. When the sum of Fhadv and Fvadv was used to correct annual Fc, we observed a 65% difference compared to the traditional u*-filter approach. Thus, the errors to the local CO2 budget, when Fhadv and Fvadv are ignored, can become large when compounded in cumulative fashion over long time intervals. We conclude that the ‘‘micrometeorological’’ (using observations of Fhadv and Fvadv) and ‘‘biological’’ (using the u* filter and temperature vs. Fc relationship) corrections differ on the basis of fundamental mechanistic grounds. The micrometeorological correction is based on aerodynamic mechanisms and shows no correlation to drivers of biological activity. Conversely, the biological correction is based on climatic responses of organisms and has no physical connection to aerodynamic processes. In those cases where they impose corrections of similar magnitude on the cumulative Fc sum, the result is due to a serendipitous similarity in scale but has no clear mechanistic explanation

    Intensification differentially affects the delivery of multiple ecosystem services in subtropical and temperate grasslands

    Get PDF
    Intensification, the process of intensifying land management to enhance agricultural goods, results in “intensive” pastures that are planted with productive grasses and fertilized. These intensive pastures provide essential ecosystem services, including forage production for livestock. Understanding the synergies and tradeoffs of pasture intensification on the delivery of services across climatic regions is crucial to shape policies and incentives for better management of natural resources. Here, we investigated how grassland intensification affects key components of provisioning (forage productivity and quality), supporting (plant diversity) and regulating services (CO2 and CH4 fluxes) by comparing these services between intensive versus extensive pastures in subtropical and temperate pastures in the USDA Long-term Agroecosystem Research (LTAR) Network sites in Florida and Oklahoma, USA over multiple years. Our results suggest that grassland intensification led to a decrease in measured supporting and regulating services, but increased forage productivity in temperate pastures and forage digestibility in subtropical pastures. Intensification decreased the net CO2 sink of subtropical pastures while it did not affect the sink capacity of temperate pastures; and it also increased environmental CH4 emissions from subtropical pastures and reduced CH4 uptake in temperate pastures. Intensification enhanced the global warming potential associated with C fluxes of pastures in both ecoregions. Our study demonstrates that comparisons of agroecosystems in contrasting ecoregions can reveal important drivers of ecosystem services and general or region-specific opportunities and solutions to maintaining agricultural production and reducing environmental footprints. Further LTAR network-scale comparisons of multiple ecosystem services across croplands and grazinglands intensively vs extensively managed are warranted to inform the sustainable intensification of agriculture within US and beyond. Our results highlight that achieving both food security and environmental stewardship will involve the conservation of less intensively managed pastures while adopting sustainable strategies in intensively managed pastures

    Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales

    Get PDF
    While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by similar to 17 +/- 11 days, and lagged air and soil temperature by median values of 8 +/- 16 and 5 +/- 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.Peer reviewe

    As I haven't seen a T-cell, video-streaming helps : nursing students' preference towards online learning materials for biosciences

    No full text
    Background: Educational research continues to seek answers for the most effective teaching strategies instructors should utilise in teaching bioscience courses. However, there were only few recent studies seeking for empirical evidence on nursing students’ preferred learning styles and needs to effectively learn biosciences. Aim: This study surveyed nursing students about their preferred study materials for bioscience courses and explored the reasons behind such preferences. Methods: A descriptive research approach was undertaken using a survey tool asking nursing students their preferred study resources measured through the frequency of use. Open survey questions were also included allowing narratives for reasons of preference and non-preference. Descriptive statistics for frequency distribution and NVivo for categorising written narratives were used for data analysis. Findings: Online video streaming was the most preferred study material with almost 60% of students who completed the survey responding ‘very often’ in terms of frequency of use. Required textbooks were the least popular in terms of use. Individual written narratives from open survey questions explored factors influencing preference and non-preference of particular study materials formed four major categories such as: learning needs and styles, accessibility, material content and lacks interaction. Conclusion: Enhancing student support for online learning platform is critical particularly in maximising effective utilisation of the resources students find beneficial in learning bioscience concepts

    Important yet unnecessary : nursing students' perceptions of anatomy and physiology laboratory sessions

    No full text
    Anatomy and physiology is one of the major bioscience concepts integrated within the undergraduate nursing curriculum. The current research surveyed nursing students' perception of the laboratory sessions for their anatomy and physiology course. The results revealed positive student perception toward laboratory sessions particularly on how the sessions' format and delivery complement student learning of anatomy and physiology. However, nursing students find laboratory sessions unnecessary to pass the anatomy and physiology course

    The older adult

    No full text
    corecore