36 research outputs found
Measurement of the CKM angle using with decays
A model-dependent amplitude analysis of the decay is performed using proton-proton collision data
corresponding to an integrated luminosity of 3.0fb, recorded at
and by the LHCb experiment. The CP violation observables
and , sensitive to the CKM angle , are measured to
be \begin{eqnarray*} x_- &=& -0.15 \pm 0.14 \pm 0.03 \pm 0.01, y_- &=& 0.25 \pm
0.15 \pm 0.06 \pm 0.01, x_+ &=& 0.05 \pm 0.24 \pm 0.04 \pm 0.01, y_+ &=&
-0.65^{+0.24}_{-0.23} \pm 0.08 \pm 0.01, \end{eqnarray*} where the first
uncertainties are statistical, the second systematic and the third arise from
the uncertainty on the amplitude model. These
are the most precise measurements of these observables. They correspond to
and , where is
the magnitude of the ratio of the suppressed and favoured decay amplitudes, in a mass region of around the
mass and for an absolute value of the cosine of the decay
angle larger than .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-007.htm
Using processed feeds for laying quails (Coturnix coturnix japonica)
The aim of this experiment was to determine the productive performance and egg quality of Japanese quails fed different types of processed rations (mash, extruded, or pelleted). One hundred and forty-four 18-w-old quails (Coturnix coturnix japonica) were housed in galvanized wire cages and fed a 21.50% CP and 2850 kcal ME/kg basal feed supplied in mash, extruded, or pelleted form. Experimental data were analyzed by ANOVA as a complete randomized design, with three treatments (ration forms) and six replicates of eight quails each. When necessary, means were compared by Tukey's test at 5% significance. Quails fed pelleted feed presented higher egg production, feed intake, and egg mass weight as compared to mash- and extruded-diet-fed birds. Under the conditions of the present experiment, it was possible to conclude that the feed physical form did not affect egg quality, except for pelleted diets, which promoted good production performance and high egg mass. However, the use of feed pelleting should be economically analyzed considering the final cost of egg production
Effects of organic mineral dietary supplementation on production performance and egg quality of white layers
This trial aimed at evaluating the effect of organic trace mineral supplementation of commercial layer diets on productive performance and egg quality. One-hundred-ninety-two Hy Line W36 white 69-w-old layers were distributed into a completely randomized design with three treatments, and eight replicates, with eight birds each. Treatments consisted of a basal diet supplemented with inorganic trace minerals (R1), and two others experimental diets containing 0.250 ppm (R2) and 0.500 ppm (R3) of an organic source of zinc, manganese, and selenium. Feed intake (g/bird/day), feed conversion ratio (kg/dozen egg and kg/kg egg), egg weight (g), egg production (%), thin and cracked eggshells (%), specific gravity (g/mL), Haugh Units, total egg solids (%), yolk yield, white and shell yields (%), eggshell thickness, and egg Se content were evaluated Tukey's test analyzed differences among means at 5% of probability using PROC GLM in SAS (2000). Although not significant as compared to the non-supplemented diet, improvements on relative cracked-plus-thin shells were observed with the use of organic mineral blend. The addition of the organic blend to the diet at 0.250 kg/ton resulted in (p<0.05) higher total egg solids. Also, as compared to eggs from control group, fresh and dried yolk yields were higher with the dietary inclusion of the organic mineral blend at 0.250 and 0.500 kg/ton