2,142 research outputs found
Action anticipation through attribution of false belief by 2 year olds
Two-year-olds engage in many behaviors that ostensibly require the attribution of mental states to other individuals. Yet the overwhelming consensus has been that children of this age are unable to attribute false beliefs. In the current study, we used an eyetracker to record infants' looking behavior while they watched actions on a computer monitor. Our data demonstrate that 25-month-old infants correctly anticipate an actor's actions when these actions can be predicted only by attributing a false belief to the actor
Mindblind eyes: an absence of spontaneous theory of mind in Asperger syndrome
Adults with Asperger syndrome can understand mental states such as desires and beliefs (mentalizing) when explicitly prompted to do so, despite having impairments in social communication. We directly tested the hypothesis that such individuals nevertheless fail to mentalize spontaneously. To this end, we used an eye-tracking task that has revealed the spontaneous ability to mentalize in typically developing infants. We showed that, like infants, neurotypical adults’ (n = 17 participants) eye movements anticipated an actor’s behavior on the basis of her false belief. This was not the case for individuals with Asperger syndrome (n = 19). Thus, these individuals do not attribute mental states spontaneously, but they may be able to do so in explicit tasks through compensatory learning
Differential Regulation of Growth-Promoting Signalling Pathways by E-Cadherin
Background: Despite the well-documented association between loss of E-cadherin and carcinogenesis, as well as the link between restoration of its expression and suppression of proliferation in carcinoma cells, the ability of E-cadherin to modulate growth-promoting cell signalling in normal epithelial cells is less well understood and frequently contradictory. The potential for E-cadherin to co-ordinate different proliferation-associated signalling pathways has yet to be fully explored. Methodology/Principal Findings: Using a normal human urothelial (NHU) cell culture system and following a calcium-switch approach, we demonstrate that the stability of NHU cell-cell contacts differentially regulates the Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-Regulated Kinase (ERK) and Phosphatidylinositol 3-Kinase (PI3-K)/AKT pathways. We show that stable cell contacts down-modulate the EGFR/ERK pathway, whilst inducing PI3-K/AKT activity, which transiently enhances cell growth at low density. Functional inactivation of E-cadherin interferes with the capacity of NHU cells to form stable calcium-mediated contacts, attenuates E-cadherin-mediated PI3-K/AKT induction and enhances NHU cell proliferation by allowing de-repression of the EGFR/ERK pathway and constitutive activation of beta-catenin-TCF signalling. Conclusions/Significance: Our findings provide evidence that E-cadherin can differentially and concurrently regulate specific growth-related signalling pathways in a context-specific fashion, with direct, functional consequences for cell proliferation and population growth. Our observations not only reveal a novel, complex role for E-cadherin in normal epithelial cell homeostasis and tissue regeneration, but also provide the basis for a more complete understanding of the consequences of E-cadherin loss on malignant transformation
The Human Tissue-Biomaterial Interface : A Role for PPARγ-Dependent Glucocorticoid Receptor Activation in Regulating the CD163(+) M2 Macrophage Phenotype
In vivo studies of implanted acellular biological scaffolds in experimental animals have shown constructive remodeling mediated by anti-inflammatory macrophages. Little is known about the human macrophage response to such biomaterials, or the nature of the signaling mechanisms that govern the macrophage phenotype in this environment. The cellular events at the interface of a tissue and implanted decellularized biomaterial were examined by establishing a novel ex vivo tissue culture model in which surgically excised human urinary tract tissue was combined with porcine acellular bladder matrix (PABM). Evaluation of the tissue-biomaterial interface showed a time-dependent infiltration of the biomaterial by CD68(+) CD80(-) macrophages. The migration of CD68(+) cells from the tissue to the interface was accompanied by maturation to a CD163(hi) phenotype, suggesting that factor(s) associated with the biomaterial or the wound edge was/were responsible for the active recruitment and polarization of local macrophages. Glucocorticoid receptor (GR) and peroxisome proliferator activated receptor gamma (PPARγ) signaling was investigated as candidate pathways for integrating inflammatory responses; both showed intense nuclear labeling in interface macrophages. GR and PPARγ activation polarized peripheral blood-derived macrophages from a default M1 (CD80(+)) toward an M2 (CD163(+)) phenotype, but PPARγ signaling predominated, as its antagonism blocked any GR-mediated effect. Seeding on PABM was effective at polarizing peripheral blood-derived macrophages from a default CD80(+) phenotype on glass to a CD80(-) phenotype, with intense nuclear localization of PPARγ. These results endorse in vivo observations that the infiltration of decellularized biological scaffolds, exemplified here by PABM, is pioneered by macrophages. Thus, it appears that natural factors present in PABM are involved in the active recruitment and polarization of macrophages to a CD163(+) phenotype, with activation of PPARγ identified as the candidate pathway. The harnessing of these natural matrix-associated factors may be useful in enhancing the integration of synthetic and other natural biomaterials by polarizing macrophage activation toward an M2 regulatory phenotype
Sources of variability in cytosolic calcium transients triggered by stimulation of homogeneous uro-epithelial cell monolayers
Epithelial tissue structure is the emergent outcome of the interactions between large numbers of individual cells. Experimental cell biology offers an important tool to unravel these complex interactions, but current methods of analysis tend to be limited to mean field approaches or representation by selected subsets of cells. This may result in bias towards cells that respond in a particular way and/or neglect local, context-specific cell responses. Here, an automated algorithm was applied to examine in detail the individual calcium transients evoked in genetically homogeneous, but asynchronous populations of cultured non-immortalized normal human urothelial cells when subjected to either the global application of an external agonist or a localized scratch wound. The recorded calcium transients were classified automatically according to a set of defined metrics and distinct sub-populations of cells that responded in qualitatively different ways were observed. The nature of this variability in the homogeneous cell population was apportioned to two sources: intrinsic variation in individual cell responses and extrinsic variability due to context-specific factors of the environment, such as spatial heterogeneity. Statistically significant variation in the features of the calcium transients evoked by scratch wounding according to proximity to the wound edge was identified. The manifestation of distinct sub-populations of cells is considered central to the coordination of population-level response resulting in wound closure
Investing in Biodiversity Conservation: Proceedings of a Workshop
This document presents the proceedings of a one-day Workshop on Investing in Biodiversity Conservation held at the Inter-American Development Bank in Washington, D.C., on October 28, 1996. The first part of the workshop was dedicated to the presentation of key topics on biodiversity financing by five leaders in the field. The second part of the workshop was dedicated to a discussion and exchange of ideas on the role of the IDB in investing in biodiversity conservation. Three main recommendations emerged: 1) The Bank should prepare a report on on its experience in biodiversity projects and development programs with biodiversity components; 2) A task force should be formed to work on a bio-diversity policy or strategy; 3) IDB staff should be trained to understand the biodiversity concept and its implications in project preparation and implementation.Environmental Policy, Biodiversity, Natural Resources Management
West to east: reflection on partnership working in Vietnam
Canterbury Christ Church University (CCCU) has been working in partnership with the Newborns Vietnam (NBV) Charity to support education and skills based training for neonatal nurses in Vietnam. The primary objective of NBV is to support the Da Nang Hospital for Women and Children (DHWC) to become a regional centre of excellence in the care of sick new borns. In 2012 CCCU was commissioned to provide an educational needs assessment of the Neonatal Intensive Care Unit at DHWC. This led to the development of an 18-month Neonatal Nursing Course. To date, this has upskilled 27 neonatal nurses to enable specialist neonatal care to be delivered more effectively. Following the success of the Neonatal Nursing Course, it was recognised by NBV that further education and skills training was required. This was to ensure specialist neonatal knowledge and skills were cascaded in order to maintain a sustainable future workforce. As a result, in 2015, CCCU was commissioned to deliver a locally and contextually appropriate Practice Educator Course. The aim of the course was to develop a number of the neonatal nurses to become Practice Educators. There were 10 neonatal nurses selected to undertake the course, including 2 from the National Paediatric Hospital in Hanoi. In addition, 4 university lecturers from the Da Nang Technical University of Medicine and Pharmacy. The success of both the Neonatal and Practice Educator Courses has led to continued engagement with NBV and another neonatal course has been commissioned for 2017. The presentation will provide an overview of the impact of the partnership on the development of a sustainable neonatal workforce in Vietnam
Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs
Treatment with praziquantel (PZQ) has become virtually the sole basis of schistosomiasis control in sub-Saharan Africa and elsewhere, and the drug is reviewed here in the context of the increasing rate that it is being used for this purpose. Attention is drawn to our relative lack of knowledge about the mechanisms of action of PZQ at the molecular level, the need for more work to be done on schistosome isolates that have been collected recently from endemic areas rather than those maintained in laboratory conditions for long periods, and our reliance for experimental work mainly on Schistosoma mansoni, little work having been done on S. haematobium. There is no evidence that resistance to PZQ has been induced in African schistosomes as a result of its large-scale use on that continent to date, but there is also no assurance that PZQ and/or schistosomes are in any way unique and that resistant organisms will not be selected as a result of widespread drug usage. The failure of PZQ to produce complete cures in populations given a routine treatment should therefore solicit considerable concern. With few alternatives to PZQ currently available and/or on the horizon, methods to monitor drug-susceptibility in African schistosomes need to be devised and used to help ensure that this drug remains effective for as long a time as possibl
A Case of Urogenital Human Schistosomiasis from a Non-endemic Area
© 2015 Calvo-Cano et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline
<b>Objective</b>: MicroRNAs (miRNAs) are small noncoding RNAs that have the capacity to control protein production through binding "seed" sequences within a target mRNA. Each miRNA is capable of potentially controlling hundreds of genes. The regulation of miRNAs in the lung during the development of pulmonary arterial hypertension (PAH) is unknown.<p></p>
<b>Methods and Results</b>: We screened lung miRNA profiles in a longitudinal and crossover design during the development of PAH caused by chronic hypoxia or monocrotaline in rats. We identified reduced expression of Dicer, involved in miRNA processing, during the onset of PAH after hypoxia. MiR-22, miR-30, and let-7f were downregulated, whereas miR-322 and miR-451 were upregulated significantly during the development of PAH in both models. Differences were observed between monocrotaline and chronic hypoxia. For example, miR-21 and let-7a were significantly reduced only in monocrotaline-treated rats. MiRNAs that were significantly regulated were validated by quantitative polymerase chain reaction. By using in vitro studies, we demonstrated that hypoxia and growth factors implicated in PAH induced similar changes in miRNA expression. Furthermore, we confirmed miR-21 downregulation in human lung tissue and serum from patients with idiopathic PAH.<p></p>
<b>Conclusion</b>: Defined miRNAs are regulated during the development of PAH in rats. Therefore, miRNAs may contribute to the pathogenesis of PAH and represent a novel opportunity for therapeutic intervention.<p></p>
- …
