24 research outputs found
Erratum
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72954/1/j.1523-1739.1988.tb00160.x.pd
Global wealth disparities drive adherence to COVID-safe pathways in head and neck cancer surgery
Peer reviewe
Enhanced regional connectivity between western North American national parks will increase persistence of mammal species diversity
Abstract Many protected areas worldwide increasingly resemble habitat isolates embedded in human-modified landscapes. However, establishing linkages among protected areas could significantly reduce species-loss rates. Here we present a novel method having broad applicability for assessing enhanced regional connectivity on persistence of mammal diversity. We combine theoretically-derived species relaxation rates for mammal communities with empirically-derived pathways. We assess the value of enhanced regional connectivity for two hypothetical networks of national parks in western North America: the Yellowstone-Glacier network and the Mount Rainier-North Cascades network. Linking the Yellowstone and Glacier park assemblages by eliminating barriers to movement in identified mammal dispersal pathways and by incorporating adjacent wilderness areas and known ungulate migratory routes into a protected area network would greatly enlarge available habitat. This would enhance medium to large mammal species persistence time by factor of 4.3, on average, or ~ 682 generations relative to individual parks. Similarly, linking Mount Rainier and North Cascades park assemblages would enhance mammal species persistence time by a factor of 4.3, on average, or ~305 generations relative to individual parks. Enhancing regional connectivity among western North America parks could serve as an important template for landscape-scale conservation in the 21st century
White-nose syndrome is likely to extirpate the endangered Indiana bat over large parts of its range
White-nose syndrome, a novel fungal pathogen spreading quickly through cave-hibernating bat species in east and central North America, is responsible for killing millions of bats. We developed a stochastic, stage-based population model to forecast the population dynamics of the endangered Indiana bat (Myotis sodalis) subject to white-nose syndrome. Our population model explicitly incorporated environmentally imposed annual variability in survival and reproductive rates and demographic stochasticity in predictions of extinction. With observed rates of disease spread, \u3e90% of wintering populations were predicted to experience white-nose syndrome within 20 years, causing the proportion of populations at the quasi-extinction threshold of less than 250 females to increase by 33.9% over 50 years. At the species’ lowest median population level, ca. year 2022, we predicted 13.7% of the initial population to remain, totaling 28,958 females (95%CI=13,330; 92,335). By 2022, only 12 of the initial 52 wintering populations were expected to possess wintering populations of \u3e 250 females. If the species can acquire immunity to the disease, we predict 3.7% of wintering populations to be above 250 females after 50 years (year 2057) after a 69% decline in abundance (from 210,741 to 64,768 [95%CI=49,386;85,360] females). At the nadir of projections, we predicted regional quasi-extirpation of wintering populations in 2 of 4 Recovery Units while in a third region, where the species is currently most abundant,\u3e95% of the wintering populations were predicted to be below 250 females. Our modeling suggests white-nose syndrome is capable of bringing about severe numerical reduction in population size and local and regional extirpation of the Indiana bat
The economic and environmental impact of trade in forest reserve obligations: a simulation analysis of options for dealing with habitat heterogeneity
A tradeable development rights (TDR) program focusing on biodiversity conservation faces a crucial problem: defining which areas of habitat should be considered equivalent. Restricting the trading scope to a narrow area could boost the range of biodiversity conserved but could increase the opportunity cost of conservation. The issue is relevant to Brazil, where TDR-like policies are emerging. Long-standing laws require each rural property to maintain a legal forest reserve (reserva legal) of at least 20%, but emerging policies allow some tradeability of this obligation. This paper uses a simple, spatially explicit model to simulate a hypothetical state-level program. We find that wider trading scopes drastically reduce landholder costs of complying with this regulation and result in environmentally preferable landscapes.<br>Programas que tenham por objetivo desenvolver um mercado de Direitos Especiais de Propriedade (DEP) enfrentam um problema fundamental, qual seja a definição de áreas de preservação equivalentes. Caso a definição seja por um conceito muito restritivo, poderá ocorrer uma maior conservação da biodiversidade, porém com um aumento do custo de oportunidade da preservação ambiental. O assunto é relevante para o Brasil onde programas semelhantes aos DEP estão surgindo. A legislação exige que cada propriedade rural mantenha pelo menos 20% de sua área na forma de florestas (reserva legal), porém algumas políticas nascentes já permitem tipo de negociação de Direitos. Este trabalho usa um modelo espacial simples para simular o efeito de um programa hipotético implantado em um estado. O principal resultado é que uma política menos restritiva para a comercialização dos DEP reduz de forma expressiva, para os produtores rurais, os custos de cumprir a legislação e leva a soluções preferíveis sob o ponto de vista ambiental