55 research outputs found

    Innovative ingredients and emerging technologies for controlling ice recrystallisation, texture and structure stability in frozen dairy desserts: a review

    Get PDF
    Over the past decade, ice cream manufacturers have developed a strong understanding of the functionality of key ingredients and processing, developing effective explanations for the link between structure forming agents, stability mechanisms and perceived quality. Increasing demand for products perceived as healthier / more natural with minimal processing has identified a number of new tools to improve quality and storage stability of frozen dairy desserts. Ingredients such as dietary fibre, polysaccharides, prebiotics, alternate sweeteners, fat sources rich in unsaturated fatty acids and ice structuring proteins have been successfully applied as cryoprotective, texturizing and structuring agents. Emerging minimal processing technologies including hydrostatic pressure processing, ultrasonic or high pressure assisted freezing, low temperature extrusion and enzymatically induced biopolymers crosslinking have been evaluated for their ability to improve colloidal stability, texture and sensory quality. It is therefore timely for a comprehensive review

    Atmospheric pressure chemical ionisation mass spectrometry analysis linked with chemometrics for food classiïŹcation – a case study: geographical provenance and cultivar classiïŹcation of monovarietal clariïŹed apple juices

    Get PDF
    In the present work, we have evaluated for first time the feasibility of APCI-MS volatile compound fingerprinting in conjunction with chemometrics (PLS-DA) as a new strategy for rapid and non-destructive food classification. For this purpose 202 clarified monovarietal juices extracted from apples differing in their botanical and geographical origin were used for evaluation of the performance of APCI-MS as a classification tool. For an independent test set PLS-DA analyses of pre-treated spectral data gave 100% and 94.2% correct classification rate for the classification by cultivar and geographical origin, respectively. Moreover, PLS-DA analysis of APCI-MS in conjunction with GC-MS data revealed that masses within the spectral ACPI-MS data set were related with parent ions or fragments of alkyesters, carbonyl compounds (hexanal, trans-2-hexenal) and alcohols (1-hexanol, 1-butanol, cis-3-hexenol) and had significant discriminating power both in terms of cultivar and geographical origin

    Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: technological characterization, storage stability and survival after in vitro digestion

    Get PDF
    We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion

    Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films

    Get PDF
    Probiotic incorporation in edible films and coatings has been shown recently to be an efficient strategy for the delivery of probiotics in foods. In the present work, the impact of the compositional, physicochemical and structural properties of binary starch-protein edible films on Lactobacillus rhamnosus GG viability and stability was evaluated. Native rice and corn starch, as well as bovine skin gelatine, sodium caseinate and soy protein concentrate were used for the fabrication of the probiotic edible films. Starch and protein type both impacted the structural, mechanical, optical and thermal properties of the films, and the process loss of L. rhamnosus GG during evaporation-dehydration was significantly lower in the presence of proteins (0.91 to 1.07 log CFU/g) compared to solely starch based systems (1.71 log CFU/g). A synergistic action between rice starch and proteins was detected when monitoring the viability of L. rhamnosus GG over four weeks at fridge and room temperature conditions. In particular, a 3- to 7-fold increase in the viability of L. rhamnosus GG was observed in the presence of proteins, with sodium caseinate – rice starch based films offering the most enhanced stability. The film’s shelf-life (as calculated using the FAO/WHO (2011) basis of 6 log viable CFU/g) ranged between 27-96 and 15-24 days for systems stored at fridge or room temperature conditions respectively

    Customised broadband metamaterial absorbers for arbitrary polarisation

    Full text link
    This paper shows that customised broadband absorption of electromagnetic waves having arbitrary polarisation is possible by use of lossy cut-wire (CW) metamaterials. These useful features are confirmed by numerical simulations in which different lengths of CW pairs are combined as one periodic metamaterial unit and placed near to a perfect electric conductor (PEC). So far metamaterial absorbers have exhibited some interesting features, which are not available from conventional absorbers, e.g. straightforward adjustment of electromagnetic properties and size reduction. The paper shows how with proper design a broad range of absorber characteristics may be obtained.Comment: 12 pages, 5 figures, submitted to Optics Expres

    Stability of Lactobacillus rhamnosus GG incorporated in edible films: impact of anionic biopolymers and whey protein concentrate

    Get PDF
    The incorporation of probiotics and bioactive compounds, via plasticised thin-layered hydrocolloids, within food products has recently shown potential to functionalise and improve the health credentials of processed food. In this study, choice of polymer and the inclusion of whey protein isolate was evaluated for their ability to stabalise live probiotic organisms. Edible films based on low (LSA) and high (HSA) viscosity sodium alginate, low esterified amidated pectin (PEC), kappa-carrageenan/locust bean gum (Îș-CAR/LBG) and gelatine (GEL) in the presence or absence of whey protein concentrate (WPC) were shown to be feasible carriers for the delivery of L. rhamnosus GG. Losses of L. rhamnosus GG throughout the drying process ranged from 0.87 to 3.06 log CFU/g for the systems without WPC, losses were significantly reduced to 0 to 1.17 log CFU/g in the presence of WPC. Storage stability (over 25d) of L. rhamnosus GG at both tested temperatures (4 and 25°C), in descending order, was Îș-CAR/LBG>HSA>GEL>LSA=PEC. In addition, supplementation of film forming agents with WPC led to a 1.8- to 6.5-fold increase in shelf-life at 4°C (calculated on the WHO/FAO minimum requirements of 6 logCFU/g), and 1.6 to 4.3-fold increase at 25°C. Furthermore probiotic films based on HSA/WPC and Îș-CAR/LBG/WPC blends had both acceptable mechanical and barrier properties

    Stability of Lactobacillus rhamnosus GG in prebiotic edible films

    Get PDF
    The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillus rhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG

    Intragastric structuring of anionic polysaccharide kappa-carrageenan filled gels under physiological in vitro digestion conditions

    Get PDF
    In the present work, sodium alginate (SA), low methoxyl pectin (PEC) and Îș-carrageenan (Îș-CAR) were evaluated for their intragastric structuring ability by means of light microscopy and dynamic oscillatory rheology. SA and PEC solutions, their Ca2+ complexed gel analogues as well as their binary blends with ionically or thermally set sheared Îș-CAR gels, were subjected to in vitro orogastric conditions. SA and PEC – Ca2+ complexed sheared gels exerted the highest vulnerability to digestive fluid exposure due to the dialysis of egg-box dimer structures via proton-calcium exchange. Incorporation of SA and PEC systems to Îș-CAR gels prevented the loss of mechanical strength of the gastric gels due to the ability of Îș-CAR to undergo spontaneous gelation in the presence of Na+ and K+ ions. Binary blends of SA and PEC – Ca2+ complexed sheared gels with Îș-CAR-Ca2+ gels exerted a significantly lower mechanical strength loss sensitivity against pH and counterion composition of the gastric fluids

    Probiotic edible films as a new strategy for developing functional bakery products: the case of pan bread

    Get PDF
    In the present paper, a novel approach for the development of probiotic baked cereal products is presented. Probiotic pan bread constructed by the application of film forming solutions based either on individual hydrogels e.g. 1% w/w sodium alginate (ALG) or binary blends of 0.5% w/w sodium alginate and 2% whey protein concentrate (ALG/WPC) containing Lactobacillus rhamnosus GG, followed by an air drying step at 60 °C for 10 min or 180 °C for min were produced. No visual differences between the bread crust surface of control and probiotic bread were observed. Microstructural analysis of bread crust revealed the formation of thicker films in the case of ALG/WPC. The presence of WPC improved significantly the viability of L. rhamnosus GG throughout air drying and room temperature storage. During storage there was a significant reduction in L. rhamnosus GG viability during the first 24 h, viable count losses were low during the subsequent 2–3 days of storage and growth was observed upon the last days of storage (day 4–7). The use of film forming solutions based exclusive on sodium alginate improved the viability of L. rhamnosus GG under simulated gastro-intestinal conditions, and there was no impact of the bread crust matrix on inactivation rates. The presence of the probiotic edible films did not modify cause major shifts in the mechanistic pathway of bread staling – as shown by physicochemical, thermal, texture and headspace analysis. Based on our calculations, an individual 30–40 g bread slice can deliver approx. 7.57–8.98 and 6.55–6.91 log cfu/portion before and after in-vitro digestion, meeting the WHO recommended required viable cell counts for probiotic bacteria to be delivered to the human host

    Study of intragastric structuring ability of sodium alginate based o/w emulsions under in vitro physiological pre-absorptive digestion conditions

    Get PDF
    In the present work, the intragastric structuring ability of o/w emulsions either stabilised (1–4%, w/w of sodium alginate (SA)) or structured with sheared ionic gel (1–3%, w/w of SA crosslinked with Ca2+) in the absence (saliva and gastric phases constituted of deionised water) or presence of in vitro pre-absorptive conditions (physiological simulated saliva and gastric fluids) was investigated. Visualisation of the morphological aspects of the gastric chymes, in the absence of multivalent counterions, demonstrated that SA stabilised systems underwent a remarkable swelling in the pH range of 2–3, whilst at the same pH range, ionic SA gel structured systems maintained their major structure configuration. When the aforementioned systems were exposed to physiological intragastric fluids, a reduction of the length and the hydrodynamic volume of the alginate fibres was detected regardless the structuring approach. On their exposure to physiological intragastric conditions (pH = 2), SA stabilised emulsions underwent sol–gel transition achieving a ca. 3- to 4-order increase of storage modulus (at 1 Hz). In the case of ionic sheared gel structured emulsions, exposure to physiological intragastric fluids resulted in a 10-fold reduction ability of their acid structuring ability, most likely due to the dialysis of egg-box dimer conformations by monovalent cations and protons and the sterical hindering of hydrogen bonding of MM and GG sequences under acidic conditions. Using of non-physiological simulated intragastric fluids was associated with overestimated structuring performance of SA regardless its physical state
    • 

    corecore