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ABSTRACT 26 

In the present work, sodium alginate (SA), low methoxyl pectin (PEC) and κ-carrageenan (κ-27 

CAR) were evaluated for their intragastric structuring ability by means of light and dynamic 28 

oscillatory rheology. SA and PEC solutions, their Ca2+ complexed gel analogues as well as 29 

their binary blends with ionically or thermally set sheared κ-CAR gels, were subjected to in 30 

vitro orogastric conditions. SA and PEC – Ca2+ complexed sheared gels exerted the highest 31 

vulnerability to digestive fluid exposure due to the dialysis of egg-box dimer structures via 32 

proton-calcium exchange. Incorporation of SA and PEC systems to κ-CAR gels prevented the 33 

loss of mechanical strength of the gastric gels due to the ability of κ-CAR to undergo 34 

spontaneous gelation in the presence of Na+ and K+ ions. Binary blends of SA and PEC – Ca2+ 35 

complexed sheared gels with κ-CAR-Ca2+ gels exerted a significantly lower mechanical 36 

strength loss sensitivity against pH and counterion composition of the gastric fluids.    37 
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1. INTRODUCTION  51 

Over the last decades the prevalence of obesogenic lifestyle associated with the consumption 52 

of highly calorific food products, limited uptake of essential micronutrients and dietary fibre, 53 

as well as restricted physical activity have led to an alarming increase of obesity and obesity 54 

related health complications (Lake and Townshend, 2006). As result, health disease such as 55 

type II diabetes, metabolic syndrome, hypertension, coronary artery disease, stroke, 56 

osteoarthritis, liver and gall bladder disease, and obstructive sleep apnoea have been evidenced 57 

(Kopelman, 2007). In addition, the association of obesity to several forms of cancer such as 58 

endometrial, kidney, postmenopausal breast and colocteral adenoma has been reported 59 

(Kopelman, 2007; Vigneri et al., 2006). Modulation of eating behaviour via suppressing 60 

appetite and controlling the dietary and calorific value of food are widely recognised as 61 

effective strategies to counteract obesity. As for appetite suppression, it has been demonstrated 62 

that satiety is a responsive construct of the combination of environmental, physiological and 63 

neurobiological signalling which involves food choice and intake based on the cross-modal 64 

orosensory perception response, as well as pre-absorptive gastric stretching and emptying, 65 

suppression of digestive enzymes activity) and post absorptive (macro- and micro-nutrients 66 

absorption, regulation of the gut microbiota) parameters (Bellisle, 2008; Chambers et al., 2015; 67 

Fiszman and Varela, 2013a, 2013b; Llewellyn and Wardle, 2013).   68 

Food macromolecules including proteins, dietary fibre and lipids are known as having a pivotal 69 

impact on satiety signalling; however, this is generally attained via different mechanistic 70 

physiological and neurobiological pathways (Fiszman and Varela, 2013b). As concerns to 71 

dietary fibre, their satiety suppression effectiveness stems from their chemical and functional 72 

aspects such as thickening and gelling ability, water and oil holding capacity, 73 

fermentability/digestibility, absorption and mucoadhesivity (Brownlee, 2011; Fiszman and 74 

Varela, 2013a, 2013b; Kristensen and Jensen, 2011). In a pre-absorptive digestion context, 75 



dietary fibre can induce a plausible suppression of appetite via their ability to prolong 76 

orosensory exposure (oral processing/mastication, secretion of saliva and gastric juice) and to 77 

modulate the gastric response to food ingestion, e.g. activation of stomach mechanoreceptors 78 

triggering stomach distension due to intragastric structuring, reduction of gastric enzymes 79 

activity and delay of gastric emptying. Therefore, soluble dietary fibre exerting a fair 80 

thickening ability and/or self- or co-structuring (in the presence of other macronutrients) ability 81 

under acidic conditions, such as pectins, seaweed extracts (alginates and carrageenans), root 82 

extracts (konjac gum), microbial synthesised gums (curdlan and gellan) and cellulose 83 

derivatives (HPMC, CMC), have been scrutinised as potential intragastric structuring materials 84 

(Borreani et al., 2016; Bradbeer et al., 2014; Fiszman and Varela, 2013a; Garrec et al., 2013; 85 

Logan et al., 2015; Morell et al., 2014; Soukoulis et al., 2016; Spyropoulos et al., 2011; Zhang 86 

et al., 2014). In addition, biopolymer assisted structural and interfacial engineering methods 87 

have also been developed to reduce the energy density and promote satiety response of staple 88 

processed food (Norton et al., 2006 & 2015). For example, crosslinked gel networks 89 

(hydrogels) and ionotropically gelled microparticulates (fluid gels), protein-polysaccharide 90 

assembled structures, as well as highly viscosified aqueous systems (w/w) or o/w emulsions 91 

are only some of the structurally bespoke food models promoting satiation response via their 92 

intragastric structuring ability (Norton et al., 2015). When it comes to scrutinising the 93 

intragastric ability of biopolymer structure engineered food models, adopting physiological 94 

pre-absorptive digestion conditions is of paramount importance. Soukoulis and co-workers 95 

(2016) have demonstrated that the adoption of a harmonised in vitro digestion protocol 96 

(INFOGEST) was associated with evidently diversified structuring performance of sodium 97 

alginate based o/w emulsions throughout gastrointestinal passage. Therefore, parameters such 98 

as the pH fluctuation due to human host physiological diversity and stomach fullness state, as 99 

well as the counterions complexity of the individual simulating pre-absorptive digestive fluids 100 



(including the oral phase) should be considered as validating criteria of the foreseen intragastric 101 

structuring performance of food biopolymers.  102 

In the present work we aimed to investigate the intragastric structuring ability of gel composites 103 

comprising anionic polysaccharides as the responsive construct of intrinsic (ionotropic, random 104 

to ordered coil and acid self-induced gelling ability) and extrinsic (pH of the gastric chymes, 105 

concentration and ionic strength of the simulating pre-absorptive digestive fluids) parameters. 106 

The morphological and mechanical characteristics of the gastric chymes were assessed by 107 

means of optical microscopy and dynamic oscillatory rheology respectively.  108 

 109 

2. MATERIALS AND METHODS 110 

2.1 Materials  111 

Low viscosity sodium alginate (250 mPa·s, 2% w/w in water at 25°C, M/G ratio = 1.6, 112 

mannuronic to guluronic acid content 61-31, Mw = 1.43  105 g mol-1), κ-carrageenan (5-25 113 

mPa·s, 0.3% w/w in water at 25°C), anhydrous calcium carbonate, δ-glucono-lactone, and 114 

porcine pepsin (ca. 474 U/mg) were purchased from Sigma Aldrich (Leuven, Belgium). All 115 

other chemicals, unless otherwise stated, were from the same supplier and of analytical grade 116 

quality. Low calcium reactivity apple pectin (45 % degree of esterification, 80% galacturonic 117 

acid content, Mw = 2  105 g mol-1) was kindly provided as a gift from Herbstreith and Fox 118 

GmbH (Neunbürg, Germany). All biopolymers listed were used without any further 119 

purification.  120 

2.2 Preparation of the biopolymer based solutions and Ca2+ mediated gel systems 121 

Two grams of biopolymer (sodium alginate, κ-carrageenan, or pectin) were dispersed into 200 122 

mL of deionised 18 MΩ water (Millipore, USA), heated at 80 °C, kept at the same temperature 123 

for 1 h to allow complete dissolution and then the obtained aliquots were cooled at 50°C and 124 

left to fully hydrate overnight under constant magnetic stirring. To prevent microbial spoilage, 125 



a small amount of sodium azide (0.002% w/w) was added. One hundred mL aliquots of sodium 126 

alginate, pectin and κ-carrageenan solutions (2% w/w) were mixed with anhydrous calcium 127 

carbonate in order to achieve a final concentration of 40 mM. The biopolymer solutions were 128 

successively ultrasonicated (5 min, 90% amplitude, UP200S, Hielscher GmbH, Teltow, 129 

Germany) to ensure uniform distribution of CaCO3. Finally, the biopolymer solutions were 130 

mixed with δ-glucono-lactone (at a 2:1 GDL to CaCO3 ratio), covered with aluminium foil and 131 

kept under magnetic agitation (1000 rpm) at 50 °C for 6 h to allow ionotropic gelation of the 132 

biopolymers triggered via the in situ release of Ca2+ ions for 6 h. Evaporated water was added 133 

back and the gels were cooled at ambient temperature under stirring (20±2 °C). A similar 134 

approach was also used in the case of thermally set κ-carrageenan systems, i.e. the heated 135 

solutions were left to cool down (ca. 2 °C/min) to ambient temperature under constant 136 

magnetic agitation as previously described. Binary blends (1:1) of the Ca2+ complexed sodium 137 

alginate and pectin with either ionically or thermally set κ-carrageenan were also prepared. All 138 

biopolymer comprising systems were stored overnight at ambient temperature before carrying 139 

out the in vitro pre-absorptive digestion experiments.  140 

2.3 In vitro pre-absorptive digestion of the biopolymer solutions and Ca2+ mediated gels 141 

The gastric structuring ability under simulated physiological conditions was studied adopting 142 

the INFOGEST static standardised in vitro model as previously described by Minekus et al. 143 

(2014). In brief, 5 g of the biopolymer system (solution or gel), preconditioned at 37±1 °C, 144 

were transferred into 50 mL plastic centrifuge tubes and mixed with 5 mL of simulated salivary 145 

fluid (SSF) (pH = 7, K+ = 18.8, Na+ = 13.6, Mg2+ = 0.15, Ca2+ = 1.5 mM). The obtained oral 146 

phase was successively mixed with 10 mL simulated gastric fluid (SGF) (pH = 2, K+ = 7.8, 147 

Na+ = 72.2, Mg2+ = 0.1, Ca2+ = 0.15 mM) and incubated at 37 °C for 1 h into a shaking water 148 

bath (GFL GmbH, Germany) operated at 100 rpm simulating a physiologically achievable 149 

antral shear rate (Vardakou et al., 2011). Simulated gastric chyme systems were cooled down 150 



to 25 °C and were successively characterised by means of dynamic oscillatory rheology. In 151 

vitro digestion experiments were carried out in triplicate.  152 

In addition, a duplicate batch of model gastric chymes adjusted to a pH ranging from 1 to 4, 153 

corresponding to stomach conditions varying from the fasted (starvation) to fed (full stomach) 154 

state respectively, was also prepared adopting either physiological (systems diluted with SSF 155 

& SGF) or non-physiological (systems diluted exclusively with Millipore water) pre-absorptive 156 

digestion conditions.  157 

2.4 Dynamic oscillatory rheological measurements  158 

Dynamic oscillatory rheological measurements of the initial biopolymer aqueous systems as 159 

well as of the obtained gastric chymes were carried out in an Anton-Paar rheometer (MCR 302, 160 

WESP, Graz, Austria). Initial biopolymer aliquots were measured using a cone plate geometry 161 

(CP50-1) whilst the gastric chyme suspensions were analysed by means of double gap 162 

concentric cylinder geometry (DG 26.7). All measurements were performed at 25 ± 0.03 °C.  163 

Strain-sweep (0.001 to 1000%) measurements of the biopolymer aliquots and gastric chymes 164 

were carried out at 1Hz to determine the linear viscoelastic region (LVR). Therefore, the 165 

viscoelastic properties of all biopolymer systems were determined by small frequency 166 

amplitude sweeps (0.1 to 10 Hz) at a constant strain of 0.1%.  167 

Thermo-oscillatory scans at a constant strain of 0.1% and frequency of 1 Hz were also carried 168 

out to investigate the melting behaviour of the biopolymers. To prevent water evaporation the 169 

cone-plate edge was covered with a small amount of silicon oil. A cooling-heating protocol 170 

was applied as follows: a) heating from 10 to 70 at 2°C/min, b) holding at 70°C for 5 min and 171 

c) cooling from 70 to 10°C at 2°C/min. The elastic modulus (G´) and storage modulus (G´´) 172 

curves crossover points, at heating and cooling step were calculated to define melting and 173 

gelation temperature (midpoint) of the biopolymer systems, respectively (Suppl. Table 1). 174 

2.5 Light microscopy  175 



The structure conformational changes of the biopolymer fibres during the pre-absorptive 176 

digestion conditions (saliva and gastric phases) were qualitatively assessed by means of optical 177 

microscopy. A small amount (ca. 1 mL) of the individual biopolymer containing gastric chyme 178 

was mixed with either 0.25 mL of toluidine blue solution (0.05% w/w in distilled water) or 179 

0.25 mL of saffronin solution and vortexed for 30 s. Toluidine blue was used to stain κ-180 

carrageenan whereas saffronin was used to stain sodium alginate and pectin containing 181 

systems. A 1:1 toluidine blue to saffronin mixture was used to stain the binary biopolymer 182 

based gastric chymes. Then, ca. 200 μL of the stained biopolymer aliquot was deposited on a 183 

glass slide and covered carefully by a glass cover slip so to avoid the entrapment of air bubbles. 184 

Samples were visualised at a magnification of 10 using a Zeiss optical microscope (Axio Vert 185 

A1, Zeiss GmbH, Germany).  186 

2.6 Statistical analyses  187 

Normal distribution of data and equality of variance were verified by normal distribution plots 188 

and box-plots, respectively. One way ANOVA was performed on complex viscosity data of 189 

the simulated gastric chymes in order to evaluate the significance of pH and ionic strength 190 

conditions. All analyses were carried out using SPSS v.19 statistical software (IBM Inc., 191 

Chicago, IL, USA). 192 

3. RESULTS AND DISCUSSION  193 

3.1 Thermo-oscillatory characterisation of the biopolymer aliquots  194 

The biopolymer aqueous systems were subjected to thermo-oscillatory scanning within the 195 

linear viscoelasticity region (frequency 1Hz, strain 0.1%) to assess their mechanical response 196 

on their mixing with simulated pre-absorptive digestion fluids (saliva and gastric juice) as well 197 

as to determine the physical state transitions, i.e. sol to gel, during the fabrication of the sheared 198 

biopolymer gels (Fig. 1). Corroborating the literature data, only κ-carrageenan (CAR) systems 199 

exerted a clear sol-gel transition occurring at ca. 39°C as result of its ability to undergo random 200 



coil to double helix structure conformation (Tecante and Nez Santiago, 2012). As for sodium 201 

alginate (SA) and apple pectin (PEC), systems did not exert any distinct physical state transition 202 

retaining their domineering viscous-like character across the 10-70°C temperature range 203 

(Suppl. Table 1, Fig. 1). Nevertheless, in the case of PEC, rheological spectra exhibited 204 

significant hysteresis which possibly is associated with the conformational reorganisation of 205 

pectin aggregates as function of temperature. Indeed, Muhidinov et al. (2011) demonstrated 206 

that by heating PEC aqueous systems from 20 to 60°C, Higgins coefficient (Kh) was reduced 207 

attaining a minimum value around 40°C which was primarily attributed to the disintegration 208 

of pectin aggregates. Further increase of temperature resulted in the increase of Kh indicating 209 

the restructuring of protein molecules into small compact structures.  210 

Ionotropic (Ca2+) gelation of the biopolymer did not modify significantly the profile of the 211 

thermo-rheological spectra in the case of SA and CAR. In the latter case, a more pronounced 212 

hysteresis between the melting and cooling curves was observed probably due to the occurring 213 

gel-sol-gel transitions, i.e. de-assembly of the aggregated double helices to form random 214 

biopolymer coils and vice versa (Kara et al., 2003). In addition, upon heating, CAR-Ca2+ 215 

sheared gels retained their domineering solid like behaviour (G´>G´´) in the entire temperature 216 

range suggesting a partial de-assembly of the double helices contrarily to pure CAR systems. 217 

On the other hand, ionic gelation of PEC resulted in a significant decrease of their 218 

responsiveness to temperature e.g. hysteresis loop area.  219 

Blending the ionic sheared gels (SA, PEC) with the sheared κ-carrageenan gels (thermoset and 220 

ionotropically set) at the ratio of 1:1 (Fig. 1c,d), resulted to hybrid biopolymer gel structures 221 

characterised by a domineering solid like behaviour (G´>G´´) and larger hysteresis loop areas. 222 

Although the absence of sol-gel transitions is sufficiently rational for sheared ionic gel 223 

mixtures, in the case of SA-Ca2+/CAR and PEC-Ca2+/CAR gels, the dimer structures exerted a 224 

governing influence over the structuring ability of κ-carrageenan. On the contrary, in SA/CAR 225 



and PEC/CAR gels, sol-gel transitions took place (in the range of ca. 20 to 36°C), indicating 226 

the unobstructed ability of κ-carrageenan to undergo coil to double helix structure 227 

conformational changes. Therefore, blending of the former gels with the oral and gastric fluids 228 

would expectedly induce a remarkable suppression of the melting points. Indeed, thermo-229 

oscillatory rheological characterisation of κ-carrageenan gels adopting a 4-fold dilution 230 

protocol (simulating mixing with oral and gastric fluids) with deionised water  revealed a 231 

considerable suppression of the melting and gelation temperature points, i.e. ca. 28 and 31 °C, 232 

respectively (data not shown).  233 

3.2 Viscoelastic profiling of the biopolymer aqueous systems 234 

The major physical state aspects of the biopolymer gels were assessed by means of dynamic 235 

oscillatory rheology (frequency sweeps) in the LVR (Fig. 2) at ambient (25 °C) temperature. 236 

As concerns the individual biopolymer aqueous systems (Fig. 2a), only κ-carrageenan 237 

exhibited a domineering solid-like behaviour (G´>G´´). A predominant liquid-like behaviour 238 

was observed for SA (G´<<G´´) indicating the sterically hindered interaction of the biopolymer 239 

chain segments (Ma et al., 2014), whilst a rather viscous liquid-like behaviour (G´<G´´, loss 240 

factor (tanδ)<1.5) was observed in the case of PEC, with both moduli being fairly frequency 241 

dependent; the latter is representative of topological interaction (hydrogen bonding and 242 

hydrophobic interactions) of pectin side chain segments (Ström et al., 2014). When 243 

biopolymers underwent Ca2+ complexation (Fig. 2b), an evident increase of the storage moduli 244 

was achieved, which can be attributed to the aggregation of the intermolecular junctions of the 245 

either egg-box (SA, PEC) or double helix (CAR) dimer structures (Draget et al., 2006; Fraeye 246 

et al., 2009; MacArtain et al., 2003). As concerns the biopolymer type, SA-Ca2+ sheared gels 247 

experienced an almost 6-order increase of G´, far higher than PEC-Ca2+ (> 2.5-order), and 248 

CAR-Ca2+ (<1.5 order). This appears to be rational considering the low Ca2+ reactivity of PEC 249 

due to its rather high degree and random pattern of methoxylation (Fraeye et al., 2009). For 250 



CAR, the presence of Ca2+ promotes the aggregation of the junction zone (which are also 251 

formed in the case of the sheared thermoset gels) resulting to the formation of a fine network 252 

without superstrands and therefore the observed differences in the G´ values were rather 253 

moderate (Hermansson et al., 1991).  254 

As for the binary biopolymer gel systems comprising thermoset κ-carrageenan sheared gels 255 

(CAR), a cooperative effect in terms of viscoelasticity was observed. All systems exerted a 256 

dominant solid like character (G´>G´´) of low sensitivity to oscillation frequency indicating 257 

the formation of true gel structures (Picout and Ross-Murphy, 2003). As expected, SA based 258 

binary systems were the most responsive to κ-CAR presence. It should be also noted that in the 259 

case of SA-Ca2+ and PEC-Ca2+ based blends, the G´ values achieved were ca. 4 to 8-fold higher 260 

compared to their exclusively SA-Ca2+ and PEC-Ca2+ sheared gel analogues. It is therefore 261 

hypothesised that due to the high chemical affinity of κ-carrageenan to calcium, an electrostatic 262 

intermolecular interaction between the Ca2+ conveying domains of SA and PEC chain segments 263 

with the negatively charged (e.g. sulfate) side groups of κ-carrageenan might also induced. 264 

Indeed, when the binary blends composed of exclusively Ca2+ mediated sheared gels (Fig. 2d) 265 

were scrutinised, the storage moduli were plausibly comparable to the systems containing 266 

thermoset κ-carrageenan sheared gels.  267 

3.3 Intragastric structuring ability of the biopolymer gels  268 

3.3.1 Morphological aspects of gastric chymes  269 

The gastric chymes obtained following an 1h exposure to simulated gastric fluids were assessed 270 

by means of light microscopy to assess the morphological aspects of the gel microparticulates 271 

(Figs. 3-5). In order to have a more comprehensive overview of the counterion composition 272 

impact on intragastric structuring, acidified biopolymer aliquots obtained by mixing the initial 273 

gel systems with deionised water were also microscopically analysed (Soukoulis et al., 2016). 274 

In the present work the obtained micrographs provide a tangible visualisation of the structural 275 



traits of the particulates without offering the possibility to measure the actual volume fraction 276 

of the biopolymer microparticulates. This has also been reported previously when sheared 277 

anisotropic hydrogel microstructures compressed between the glass slide and coverslip, were 278 

visually analysed (Wolf et al., 2000).  279 

Adopting a counterion–free digestion protocol (odd numbered micrographs) was associated 280 

with more intact biopolymer structures which consecutively results in larger hydrodynamic 281 

radii of the polymeric particulates. The prevalence of monovalent cation species (e.g. Na+ and 282 

K+) in the physiological simulated oral and gastric juices was associated with a remarkable 283 

modification of microstructural aspects of the gastric chymes (even numbered micrographs). 284 

As concerns the individual biopolymer (non-crosslinked) containing gastric chymes, a fair 285 

erosive effect leading to the formation of particulates of smaller hydrodynamic radius was 286 

observed (Fig. 3). This corroborates our previous findings on SA based o/w emulsions where 287 

the prevalence of monovalent cations was associated with modification of the morphological 288 

aspects of the acid self-structured biopolymer (Soukoulis et al., 2016). It has been reported that 289 

SA and PEC fibres conditioned in physiological saline undergo significant hydrodynamic 290 

volume reduction; this is due to the fibre contraction induced by salting out of the biopolymer 291 

i.e. the electrostatic repulsion between the negatively chain segments is reduced in the 292 

prevalence of the cation species (Jonassen et al., 2013; Qin, 2004). However, in all cases the 293 

biopolymer systems maintained their principal structure conformational aspects, e.g. thin 294 

layered/sheet-like, cloudy/aggregated or flocculated/fragmented for CAR, SA and PEC 295 

respectively. On the ionotropic gelation, CAR underwent the most pronounced structural 296 

changes attaining a predominantly smooth yet aggregated microstructure. Contrarily, SA-Ca2+ 297 

and PEC-Ca2+ sheared gels did not undergo any plausible microstructural changes, i.e. in both 298 

cases systems maintained their aggregated particulate form. 299 



Use of different staining protocols allowed us to sufficiently discriminate between CAR (violet 300 

coloured) and SA or PEC (dark orange coloured) rich gel microdomains (Figs. 4&5). As for 301 

the binary biopolymer gastric chyme systems containing the thermoset sheared κ-carrageenan 302 

gels (Fig. 4), a drastic size reduction of the carrageenan rich microparticulates was achieved 303 

regardless the presence and the physical state (dissolved or ionically crosslinked) of either 304 

sodium alginate or pectin. However, no significant differences in the acid particulates’ 305 

morphology were detected when the physiological gastric chymes were assessed, i.e. highly 306 

fragmented/eroded (SA/CAR and PEC/CAR) or moderately aggregated (SA-Ca2+/CAR and 307 

PEC-Ca2+/CAR) structures were detected. In line to the aforementioned, the exposure of the 308 

SA-Ca2+/CAR-Ca2+ and SA-Ca2+/CAR-Ca2+ sheared gels (Fig. 5) to highly acidic conditions, 309 

the presence of an extensively aggregated network of microparticulates was confirmed. 310 

Nevertheless, in vitro physiological gastric chymes exerted a finely aggregated structure 311 

compared to their counterion-free analogues which is in agreement to our previous findings. 312 

Therefore it can be postulated that the prevalence of sodium in the pre-absorptive digestion 313 

fluids has an ion-exchanging role on the both Ca2+ triggered dimer structures, e.g. egg-box or 314 

double helices, suppressing their intragastric structuring performance (Soukoulis et al., 2016). 315 

3.3.2 Oscillatory rheological characterisation of the gastric chymes  316 

For the rheological characterisation of the gastric chymes a concentric cylinder geometry was 317 

used, which has been previously reported as being relevant for the analysis of aqueous 318 

suspensions (Picout and Ross-Murphy, 2003). Although the obtained values of viscoelastic 319 

moduli of chymes cannot be directly contrasted to those of the initial gel systems (measured 320 

using cone-plate geometry), the obtained rheological spectra can still give insight to the 321 

structural changes occurring throughout the pre-absorptive digestion passage. According to the 322 

gastric chyme rheographs (Fig. 6), the acid structuring ability of the gels was highly diversified 323 

on their exposure to gastric juice conditions. As for the individual based systems, CAR exerted 324 



the most pronounced acid structuring ability particularly in its non-crosslinked state. On the 325 

other hand, mixing of PEC systems (in solution or sheared gel form) with the simulated oral 326 

and gastric fluids resulted to a drastic reduction of the storage moduli, exhibiting a domineering 327 

viscoelastic behaviour with a crossover point of the G´, G´´ moduli at low (<1Hz) frequencies. 328 

Therefore, the latter systems should behave as predominantly low viscosity liquids under the 329 

hereby simulating antral forces (ca. 1.7 Hz). It is well established that low methoxylated pectin 330 

may undergo gelation in the presence of both divalent and monovalent cation species (Thakur 331 

et al., 1997; Yoo et al., 2003). In the latter case, parameters such as the esterification and 332 

blockiness degree, the pH and the concentration and type of cation species control the sol-gel 333 

transition (Ström et al., 2014). As refers to monovalent cations, the presence of 0.2 M of Na+ 334 

is necessary to trigger a significant gelation (true) effect via later aggregation of pectin chains 335 

via hydrophobic and van der Waals interactions (Ström et al., 2014). In our case, the low pH 336 

of gastric chymes (pH<pKa,pectin) together with the relatively low Na+ (ca. 0.05 M) and the low 337 

blockiness and methoxylation degree of PEC obstruct its self-aggregation leading to a loosely 338 

structured biopolymer network which conveys the characteristics of rather weak gel only at 339 

very low frequencies that fall out the range of expected antral forces (Ström et al., 2014). On 340 

the contrary, SA dilute systems attained a clear true gel-like behaviour (G´>G´´) as result of 341 

the formation of intermolecular junctions via the hydrogen bonding of the protonated carboxyl 342 

groups of the GG blocks in a cooperative manner with polymannuronic block segments (Draget 343 

et al., 2006). When the Ca2+ complexed sheared gels were exposed to digestive fluids (Fig. 6b), 344 

a noticeable reduction of the mechanical strength of the gels was detected. As proposed to our 345 

previous work, the prevalence of monovalent cations triggers the ion exchange (dialysis) of 346 

Ca2+ by H+ hampering the intermolecular junctions between the dimer (egg-box) or double 347 

helix structures (Draget et al., 2006, 1998; Soukoulis et al., 2016). As expected, the rheographs 348 

revealed a higher impact of the digestive fluids on the PEC-Ca2+ than the SA gel analogues, 349 



which may be attributed to the lower chemical affinity of PEC to sodium or potassium and the 350 

constrained ability of the dialysed binding sites to interact via other forms of intermolecular 351 

bonding, e.g. hydrogen bonding or hydrophobic interactions (Fang et al., 2008). In the case of 352 

CAR-Ca2+ the ca. 1.5-order reduction of the G´ modulus can be primarily attributed to digestive 353 

fluids diluting effect (MacArtain et al., 2003) and at a lesser extent to the antagonistic calcium 354 

exchanging activity of Na+ under acidic conditions reducing the aggregative bridging of the 355 

double helices.  356 

Gastric chymes obtained by the digestion of the binary blends of either SA/SA-Ca2+ or 357 

PEC/PEC-Ca2+ with κ-CAR exhibited a persistent plateau of G´ which indicates the existence 358 

of a highly entangled network comprising the anisotropic gel microparticulates (Norton et al., 359 

2006). Although storage moduli were not significantly different among samples, the loss 360 

moduli were generally higher in the case of the SA based systems suggesting a higher level of 361 

gel particles entanglement. In addition, the presence of CAR had a dual assisting role in terms 362 

of intragastric structuring: first, it counteracted the structural losses due to the 4-fold digestion 363 

fluids diluting factor, and second, it prevented the gel mechanical strength loss due to the 364 

dialysis of the egg-box Ca2+ dimers. It is therefore postulated that the high chemical affinity of 365 

CAR with K+ and Na+ present in the digestive fluids impedes fibres contraction due to H+ 366 

induced ion exchange, facilitating chain segments interaction via hydrogen bonding (Tecante 367 

and Nez Santiago, 2012). Complexation of CAR with Ca2+ (in the case of SA-Ca2+/CAR-368 

Ca2+and PEC-Ca2+/CAR-Ca2+ sheared gels) was accompanied by a steep reduction of G´ 369 

moduli (ca. 2-order compared to the initial gel systems), yet the solid like behaviour remained 370 

strongly evident. On this occasion, it is assumed that the reduction of the elasticity of the acid 371 

gel microparticulates is primarily associated with the dialysis of egg-box dimer structures, and 372 

secondarily with the constraining of the aggregative bridging of the CAR double helices. 373 

Indeed, the gel particulates elasticity reduction in the case of the PEC-Ca2+ containing systems 374 



was pronouncedly higher than the SA analogues, due to their lower calcium chemical affinity 375 

leading to a sterically favoured ion exchanging effect.  376 

3.3.3 Impact of counterions composition and pH conditions on the complex viscosity of the 377 

gastric chymes  378 

Evaluating the impact of counterion composition of the simulating pre-absorptive digestion 379 

fluids, gastric chymes obtained by blending the initial biopolymer systems with either 380 

physiological in vitro saliva and gastric fluids or deionised (MilliQ) water were rheologically 381 

characterised at 1 Hz and 0.1 % strain (Fig. 7). As clearly depicted, the prevalence of Na+ and 382 

K+ ions was associated with a diversified intragastric structuring performance which was 383 

biopolymer dependent. As a general trend, SA based systems were better performing in terms 384 

of acid self-structuring in the absence of counterions. In this case, the formation of 385 

intermolecular junctions between both across GG blocks and at lesser extent MM block 386 

segments is sterically favoured (Draget et al., 2006). On the contrary, the intragastric 387 

structuring ability of both individual and binary CAR based biopolymer systems was reduced 388 

on their exposure to counterion-free digestive fluids supporting our postulation that 389 

electrostatic bridging of monovalent cation species with the sulfate binding sites takes place. 390 

As for PEC, solely in the case of the ionotropically structured systems a significant reduction 391 

of the intragastric structuring performance was observed in a similar manner to SA-Ca2+ 392 

sheared gels. However, it should be noted, that the binary blends of the ionotropically 393 

complexed biopolymers (SA-Ca2+/CAR and PEC-Ca2+/CAR) were not significantly affected 394 

by the ionic composition of the digestive fluids and therefore, their intragastric performance 395 

exerts the lowest sensitivity to the implemented digestion protocol. 396 

In a consecutive case study, we attempted to assess the magnitude of the impact of simulating 397 

pH gastric conditions, ranging from the fasted to the fed stomach state (Dressman et al., 1990), 398 

on the acid structuring performance of biopolymer aqueous systems (Fig. 8). Interestingly, the 399 



compositional profile of the biopolymer gels was found to crucially affect the responsiveness 400 

of intragastric structuring to pH fluctuations. Specifically, the acid self-structuring performance 401 

of SA exerted a steep increase (> 3-order) in the nearly fasted stomach pH range e.g. 2-3 402 

followed by a gradual decrease of the complex viscosity under harsh pH conditions (pH<2). 403 

This is in line with the findings of Andriamanantoanina and Rinaudo (2010) who observed an 404 

increase of the storage modulus of SA alginate solutions (in their saline form) at pH<3 reaching 405 

a maximum degree of swelling of the gel fraction at pH =2.5; then, at lower pH values a gradual 406 

decrease of the suspended gel particulates was reported. It should also be noted that at highly 407 

acidic conditions (pH<3) strong cooperative interactions with the participation of 408 

polyguluronic and polymannuronic blocks are expected to take place (Draget et al., 2006). 409 

Contrarily to SA, PEC systems exhibited an up to 2-order increase of the complex viscosity 410 

(depending on their physical state i.e. ionically complexed or free) under moderate acidic 411 

environment conditions, e.g. pH = 3. Corroborating the literature data, the acid self-structuring 412 

ability of LM PEC is maximised when pH<pKa (ca. 2.9) and in the presence of fairly sufficient 413 

concentration of monovalent (0.2 M NaCl) cation species (Ström et al., 2014). When the 414 

responsiveness of the individual κ-CAR systems was studied, a highly diversified acid 415 

structuring performance was attained depending on their physical state; complex viscosity of 416 

CAR-Ca2+ gastric chymes was not significantly affected by pH changes, whilst in the case of 417 

their ionically non-complexed analogues a upper structuring plateau was reached in the 2 to 3 418 

pH range. Reduction of the pH, resulted in a significant increase of the absolute charge of the 419 

CAR molecules facilitating the electrostatic bridging of sulfate groups with the prevalently 420 

present monovalent cation species (Tecante and Nez Santiago, 2012). When the cation binding 421 

sites of the carrageenan chains are occupied by Ca2+ the effect of the pH on the net charge of 422 

CAR molecules is reduced leading to lower sensitivity to pH change. On mixing κ-CAR with 423 

SA or SA-Ca2+ (Fig. 8b), a structuring synergy was observed, with complex viscosity of the 424 



gastric chymes remaining at high levels in the complete fasted to moderately fed state pH 425 

region i.e. 1-3. An adverse behaviour was also attained in the case of PEC/κ-CAR systems 426 

though their structuring performance was higher in the intermediate to high pH region, e.g. 2.5-427 

4. Finally, gel systems comprising exclusively ionotropically crosslinked biopolymers exerted 428 

a rather constrained sensitivity to pH fluctuation, a behaviour that could be primarily attributed 429 

to the modulating effect of the κ-CAR-Ca2+ gel component.  430 

 431 

4. CONCLUSIONS  432 

In summary, anionic biopolymers such as sodium alginate, κ-carrageenan and low 433 

methoxylpectin can promote in vitro intragastric structuring via different mechanistic pathways 434 

i.e. ionotropic gelation, acid-self structuring and thickening. As for individual biopolymer 435 

systems, SA or CAR exerted the highest structuring performance induced via cooperative 436 

junction zone formation of the homopolymeric block segments and electrostatic bridging of 437 

gastric juice monovalent ions with the sulfate binding sites respectively. Notwithstanding 438 

ionically mediated sheared gels exerted a fairly true gel character, their ability to maintain their 439 

structural aspects was diminished on their exposure to simulated digestive fluids. On the other 440 

hand, blending of SA or PEC with CAR led to a synergistic gastric structuring effect. This was 441 

primarily attributed to the ability of CAR to interact with both monovalent and divalent ions 442 

present in the gastric chymes preventing their adverse impact on acid self-structuring of SA 443 

and PEC. Finally, binary semi-solid composites comprising Ca2+ complexed anionic 444 

polysaccharides exhibited the most limited responsiveness to the pH and ionic composition of 445 

simulated digestive fluids.  446 
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SUPPLEMENTARY TABLE 1  

Sample Gelation gel temperature  

Tgel (°C) 

Melting point temperature  

Tgel (°C) 

SA nd† nd 

PEC nd  nd 

κ-CAR 38.9 ± 0.5b 46.2 ± 0.7c 

SA/κ-CAR 21.0 ± 0.4a 19.5 ± 0.2a 

PEC/ κ-CAR 20.5 ± 0.9a 36.0 ± 0.4b 

SA-Ca2+ nd nd 

PEC-Ca2+ nd nd 

κ-CAR-Ca2+ nd nd 

SA-Ca2+/CAR nd nd 

PEC-Ca2+/CAR nd nd 

SA-Ca2+/CAR-Ca2+ nd nd 

PEC-Ca2+/CAR-Ca2+ nd nd 

 


