83 research outputs found

    G protein-coupled oestrogen receptor 1, oestrogen receptors and androgen receptor in the sand rat (Psammomys obesus) efferent ducts

    Get PDF
    Background: The efferent ducts are mainly involved in the reabsorption of the seminiferous tubular fluid. Testosterone and oestrogens regulate efferent ducts functions via their receptors.Materials and methods: This paper presents an experimental investigation on the location of the P450 aromatase, the 17-b oestradiol (E2), the androgen receptor (AR), the oestrogen receptor 1 (ESR1), the oestrogen receptor 2 (ESR2) and the G protein-coupled oestrogen receptor 1 (GPER1) in the efferent ducts using Psammomys obesus as an animal model to highlight the effect of the season on the histology and the distribution of these receptors.Results: We observed a proliferation of the connective tissue, decreasing in the height of the epithelium during the resting season compared to the breeding season. Ciliated cells expressed P450 aromatase, AR, E2, ESR1, ESR2 and GPER1 during both seasons. Basal cells showed a positive staining for the ESR1 and the GPER1 during both season, the AR and E2 during the breeding season and ESR2 during the resting season.Conclusions: Our result shows that the expression of androgen receptor and oestrogen receptors in the efferent ducts vary by season witch suggest that they are largely involved in the regulation of the efferent ducts functions

    Biodiversity and dynamics of plant groups of Chebket El Melhassa region (Algeria)

    Get PDF
    This article examines phytoecological aspects of plant groups in the Chebket El Melhassa region (Tiaret-Ouest Algérien) by several types of analysis: biological, biogeographic and statistical. From the plant analysis, a list of 103 taxa distributed in 36 families was compiled, biologically characterized by a dominance of therophytes (45.6%) with species of the Mediterranean biogeographic type 20 species (19.8%) assuming particular importance. The ordination of the plant community was performed in the search for the optimum solution based on correlation with environmental factors, estimated using the phytoindication approach. The results reveal that the plants represented in the community, mostly prefer strongly lit places. Phytoindication shows a warm sub Mediterranean climate. Continentality corresponds to the sub-oceanic climate. The moisture regime ranges from strongly dry to dry soil. The plant community is formed on moderately acid soils. Plants are able to grow on both strongly acidic and neutral soils. The soil is very poor or poor in nitrogen. A four dimension variant of multidimensional scaling procedure was selected as the most appropriate decision. Dimensions selected after nonmetric multidimensional scaling were interpreted by computing weighted average scores of ecological factors for ordination configuration. Four of the plant species clusters were found to be the optimal solution on the basis of the Calinsky-Harabasz criteria. The clusters can be viewed as a functional group. Functional group A is quite diverse and represented by 42 species. This functional group is closest to the community optimum because in all four space dimensions the corresponding cluster is near the origin, which corresponds to the most typical ecological conditions. Species that constitute the group B prefer minimum values of dimension 2. This indicates a preference for illuminated sites with high temperature regime and low soil humidity. This group includes 32 species. A feature of group С is that it is located in the area of maximum values for dimension 2. Thus, this functional group is opposite to functional group B. This indicates a preference of species included in the functional group C for wetter soils. Functional group C comprises 21 species. Functional group D differs considerably from all others in its ecological characteristics. The difference is in the preference for minimum values for measurement 1. This suggests that more acid soils are optimal for a given functional group. Functional group E comprises 8 species.This article examines phytoecological aspects of plant groups in the Chebket El Melhassa region (Tiaret-Ouest Algérien) by several types of analysis: biological, biogeographic and statistical. From the plant analysis, a list of 103 taxa distributed in 36 families was compiled, biologically characterized by a dominance of therophytes (45.6%) with species of the Mediterranean biogeographic type 20 species (19.8%) assuming particular importance. The ordination of the plant community was performed in the search for the optimum solution based on correlation with environmental factors, estimated using the phytoindication approach. The results reveal that the plants represented in the community, mostly prefer strongly lit places. Phytoindication shows a warm sub Mediterranean climate. Continentality corresponds to the sub-oceanic climate. The moisture regime ranges from strongly dry to dry soil. The plant community is formed on moderately acid soils. Plants are able to grow on both strongly acidic and neutral soils. The soil is very poor or poor in nitrogen. A four dimension variant of multidimensional scaling procedure was selected as the most appropriate decision. Dimensions selected after nonmetric multidimensional scaling were interpreted by computing weighted average scores of ecological factors for ordination configuration. Four of the plant species clusters were found to be the optimal solution on the basis of the Calinsky-Harabasz criteria. The clusters can be viewed as a functional group. Functional group A is quite diverse and represented by 42 species. This functional group is closest to the community optimum because in all four space dimensions the corresponding cluster is near the origin, which corresponds to the most typical ecological conditions. Species that constitute the group B prefer minimum values of dimension 2. This indicates a preference for illuminated sites with high temperature regime and low soil humidity. This group includes 32 species. A feature of group С is that it is located in the area of maximum values for dimension 2. Thus, this functional group is opposite to functional group B. This indicates a preference of species included in the functional group C for wetter soils. Functional group C comprises 21 species. Functional group D differs considerably from all others in its ecological characteristics. The difference is in the preference for minimum values for measurement 1. This suggests that more acid soils are optimal for a given functional group. Functional group E comprises 8 species.This article examines phytoecological aspects of plant groups in the Chebket El Melhassa region (Tiaret-Ouest Algérien) by several types of analysis: biological, biogeographic and statistical. From the plant analysis, a list of 103 taxa distributed in 36 families was compiled, biologically characterized by a dominance of therophytes (45.6%) with species of the Mediterranean biogeographic type 20 species (19.8%) assuming particular importance. The ordination of the plant community was performed in the search for the optimum solution based on correlation with environmental factors, estimated using the phytoindication approach. The results reveal that the plants represented in the community, mostly prefer strongly lit places. Phytoindication shows a warm sub Mediterranean climate. Continentality corresponds to the sub-oceanic climate. The moisture regime ranges from strongly dry to dry soil. The plant community is formed on moderately acid soils. Plants are able to grow on both strongly acidic and neutral soils. The soil is very poor or poor in nitrogen. A four dimension variant of multidimensional scaling procedure was selected as the most appropriate decision. Dimensions selected after nonmetric multidimensional scaling were interpreted by computing weighted average scores of ecological factors for ordination configuration. Four of the plant species clusters were found to be the optimal solution on the basis of the Calinsky-Harabasz criteria. The clusters can be viewed as a functional group. Functional group A is quite diverse and represented by 42 species. This functional group is closest to the community optimum because in all four space dimensions the corresponding cluster is near the origin, which corresponds to the most typical ecological conditions. Species that constitute the group B prefer minimum values of dimension 2. This indicates a preference for illuminated sites with high temperature regime and low soil humidity. This group includes 32 species. A feature of group С is that it is located in the area of maximum values for dimension 2. Thus, this functional group is opposite to functional group B. This indicates a preference of species included in the functional group C for wetter soils. Functional group C comprises 21 species. Functional group D differs considerably from all others in its ecological characteristics. The difference is in the preference for minimum values for measurement 1. This suggests that more acid soils are optimal for a given functional group. Functional group E comprises 8 species

    Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors

    Get PDF
    The ability to accurately and rapidly acquire leaf area index (LAI) is an indispensable component of process-based ecological research facilitating the understanding of gas-vegetation exchange phenomenon at an array of spatial scales from the leaf to the landscape. However, LAI is difficult to directly acquire for large spatial extents due to its time consuming and work intensive nature. Such efforts have been significantly improved by the emergence of optical and active remote sensing techniques. This paper reviews the definitions and theories of LAI measurement with respect to direct and indirect methods. Then, the methodologies for LAI retrieval with regard to the characteristics of a range of remotely sensed datasets are discussed. Remote sensing indirect methods are subdivided into two categories of passive and active remote sensing, which are further categorized as terrestrial, aerial and satellite-born platforms. Due to a wide variety in spatial resolution of remotely sensed data and the requirements of ecological modeling, the scaling issue of LAI is discussed and special consideration is given to extrapolation of measurement to landscape and regional levels

    Pesticide residues in vegetables and perception of risk for consumers

    No full text
    72nd International symposium on crop&nbsp;protection</p
    corecore