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Abstract 

The efferent ducts are mainly involved in the reabsorption of the seminiferous tubular 

fluid. Testosterone as well as estrogens regulate efferent ducts functions via their receptors. 

This paper presents an experimental investigation on the location of the P450 aromatase, 

the 17-beta-estradiol (E2), the androgen receptor (AR), the estrogen receptor 1 (ESR1), the 

estrogen receptor 2 (ESR2) and the G protein-coupled estrogen receptor 1 (GPER1) in the 

efferent ducts using psammomys obesus as an animal model to highlight the effect of the 

season on the histology and the distribution of these receptors. We observed a proliferation 

of the connective tissue, decreasing in the height of the epithelium during the resting 

season compared to the breeding season. Ciliated cells expressed P450 aromatase, AR, E2, 

ESR1, ESR2 and GPER1 during both seasons. Basal cells showed a positive staining for 

the ESR1 and the GPER1 during both season, the AR and E2 during the breeding season 

and ESR2 during the resting season. Our result shows that the expression of androgen 

receptor as well as estrogen receptors in the efferent ducts vary by season witch suggest 

that they are largely involved in the regulation of the efferent ducts functions. 

Key words: GPER1, ERs, AR, aromatase, efferent ducts, sand rat 

 

 

INTRODUCTION 

In order to get into the epididymis spermatozoa cross the efferent ducts, small 

convoluted tubules [1]. Depending on species, the number of ducts varies between 1 and 

33 [2]. In most species, the epithelium of the efferent ducts is formed of ciliated cells and 

nonciliated cells, while other species have basal cells and intraepithelial lymphocytes or 

macrophages [3–6]. A conjunctive tissue and one to three layers of smooth muscle cells 

surround the ducts and help in sperm propulsion to the epididymis [7]. 

In addition to transporting sperm, the efferent ducts play a role in the reabsorption 

of the seminiferous tubular fluid to concentrate sperm by the nonciliated cells. This 

function involves water transport, the active transport of ions including solute transport, 

endocytosis and secretion [1,8–10]. The secretory functions of the efferent ducts are not 

completely known while spermiophagy function is documented [1]. Androgen regulates 

efferent ducts functions; its receptor (AR) was found in the epithelium[11,12]. But 

estrogen seems being the main regulator of the efferent ducts, considering that ERs are 
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widely expressed in the epithelium compared with AR [11,13–18]. The efferent ducts have 

two sources of androgens, either the rete testis, seminal fluid or the circulating blood in the 

vasculature[15]. Aromatase, the cytochrome P450(CYP19A1) converts the androgen into 

the estrogen, was located in the epithelial cells of efferent ducts as well as in the caput 

epididymis[19–21]. Estrogen exerts its effect through two nuclear receptors family of 

transcription factors ESR1 and ESR2 [22,23]. ESR1 was largely described in the male 

reproductive system including the efferent ducts[17,24,25], contrary to the expression of 

the ESR2, which was ubiquitous, even though it seems more predominant in epithelia than 

stroma. The expression profile of ESR2 in mouse tract is more like  AR than it is to ESR1. 

Another estrogen receptor recently found, the GPER1 that belongs to the family of seven-

transmembrane G-protein-coupled receptors and triggers rapid non-genomic cellular 

responses[26–28]. The GPER1 expression was detected in various sites of the testis[29–

34], as well as in the epididymis of adult rats[27,35,36]. Meanwhile, its expression in the 

efferent ducts is still unknown.   

Because of the major role of estrogen in the male reproductive functions and 

fertility, the presence of 17-β Estradiol and its receptors need to be explored. Therefore, we 

performed this study to investigate the location of 17-β Estradiol with its receptors (ESR1 

and ESR2) alongside with the new player in estrogen response, the GPER1, as well as AR 

and aromatase in the efferent ducts of psammomys obesus. All in comparative way 

between the breeding season and the resting season, we dispatch a query about whether the 

expression and the location of the estrogen receptors and Androgen receptors as well as the 

P450 aromatase vary during the season.     

 

MATERIALS AND METHODS 

Animals 

Adult male fat sand rats (Psammomys obesus) of average weight 145g were trapped 

in the wild region of Béni Abbès (30°07′N 2°10′W) during the breeding season (n = 8) and 

during resting season (n = 8).  They were euthanized by decapitation using a specially 

prepared laboratory guillotine in the morning, 48 h after capture. The efferent ducts were 

quickly excised, weighed, fixed in Bouin's solution, dehydrated in increasing 

concentrations of ethanol (70%, 95%, and 100%), cleaned in toluene, and embedded in 

paraffin.  
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Tissue preparation and histology 

The samples were sectioned to 5 μm thick sections using a Leitz Wetzlar 1212 

microtome. Slices were cut and mounted on histological slides or on “Super Frost” glass 

slides for immunohistochemistry. After hydration with decreasing concentrations of 

ethanol, the sections were stained with Masson's Trichrome and Hematoxylin and eosin 

(H&E) [37,38]. 

 

Immunohistochemistry 

Immunohistochemistry was performed to detect the occurrence and cell distribution 

of aromatase, 17-β Estradiol, estrogen receptors (ESR , ESR2 and GPER1) and androgen 

receptor (AR). Sections were deparaffined with cyclohexane and rehydrated with 

decreasing concentrations of ethanol. The slides were then washed in tap water for 10 min, 

then with PBS (Phosphate buffered saline). 

For antigen retrieval, the slides were incubated at 95 °C in a 10 mM sodium citrate 

solution (H-3300, pH 6.0) for 45 min (for ESR1 , ESR2 and GPER1 analysis) or 30 min 

(for AR). The slides were cooled down during 20 min then washed in distilled water. 

Endogenous peroxidase was blocked by immersing the slides in  3% peroxydase solution 

for 20 min followed by two baths in distilled water then were encircled using a DakoPen 

(Dako, USA). In order to block the nonspecific antibody bindings, sections were incubated 

with a 10% normal goat serum (S-1000) for 1 h at room temperature. Afterwards, the 

slides were incubated overnight at 4°C with primary rabbit polyclonal antibodies against 

human AR(ab74272, Abcam plc, Cambridge, UK), estradiol (AB924, Millipore, 

CHEMICON), ESR1 (H-184:sc-7207, Santa Cruz Biotechnology, USA), ESR2 (H-150:sc-

8974, Santa Cruz Biotechnology, USA), during 1h for aromatase (ab3504, Abcam plc, 

Cambridge, UK) and during 2h for GPER1 (ab39742, Abcam plc, Cambridge, UK) in wet 

chamber. All sections were exposed for 1 h to biotinylated secondary antibodies (Anti-

Mouse IgG/Rabbit IgG; BA-1400, Vectastain Universal, Vector Laboratories, Burlingame, 

CA, USA) for 1 h in a wet chamber. After rinsing three times in PBS for 5 min, the slides 

were incubated with a streptavidin-biotin-peroxidase complex for 1 h. Each tissue section 

was washed in PBS and stained by the AEC (Amino-Ethyl-Carbazole; Vector 

Laboratories, SK-4200) for aromatase and estradiol or the DAB chromogen (3, 3 

diaminobenzidine, kit for peroxidase; Vector Laboratories) for 1 min. The reaction was 
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stopped by rinsing in PBS solution. Mayer hematoxylin (Hematoxylin QS, H-3404; Vector 

Laboratories) for 1 min was used to counterstain the sections, then dehydrated and 

preserved using VectaMount (AQ Aqueous Mounting Medium, H-5501) for aromatase and 

estradiol or dehydrated and preserved using the Permount mounting medium (Fisher 

Scientific, USA) for AR, ESR1, ESR2 and GPER1. The immunostaining was observed 

under the Nikon Eclipse E 400 light microscope fitted with the Nikon DXM 1200 digital 

camera. 

The intensity of the immunostaining was scored as null (−), weakly positive (+), 

moderately positive (++) or strongly positive (+++) by two independent observers blinded 

to the antigen type under analysis. 

 

Ethical note 

All experiments complied with the Algerian legislation (Law Number 95-322/1995) 

inherent to protection of animals designed to experimental and other scientific purposes as 

well with the guidelines of the Algerian Association of Experimental Animal Sciences 

(AASEA) and were specifically approved by the latter (AASEA authorization number 

45/DGLPAG/DVA/SDA/14). 

 

RESULTS  

Histology 

During the breeding season, the efferent ducts appear as a set of epithelial sections 

dispersed in intertubular connective tissue. These tubules relate the rete testis to the caput 

epididymis. 

Each tubular section consists of pseudostratified columnar epithelium with irregular 

height, formed of three cellular categories: columnar ciliated cells, with clear cytoplasm 

and basal or apical nucleus, nonciliated cells and basal cells (Fig. 1A). The apical 

cytoplasm of the ciliated cells contains cilia projecting into the lumen of the efferent ducts. 

The base of these cilia is marked by the presence of a thick line.  

The nonciliated cells, characterized by dark cytoplasm, have thick granules in the 

supranuclear zone and/or in the apical cytoplasm. These granules are probably secretory 

granules (Fig. 1B). 
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The basal cells of a small volume adhere to the basement membrane but do not 

prolong to the lumen of the duct, interposed between the ciliated cells and the nonciliated 

cells (Fig. 1A). 

The epithelium of each section is surrounded with two layers of smooth muscle 

cells; these cells are arranged in concentric way around the epithelial tubules. The lumen 

contains spermatozoa and shows an irregular aspect due to the irregular cellular height. 

During the resting season, an important proliferation of the connective tissue and a 

significant decrease in the height of the epithelium was observed(Fig. 1C). All cellular 

categories were observed, ciliated cells and nonciliated cells were columnar giving the 

epithelium the same appearance. We noticed the absence of the granules observed during 

the breeding season (Fig. 1D).   

 

Immunohistochemistry 

All results of immunohistochemistry for aromatase, 17-β Estradiol, AR, ESR1, 

ESR2 and GPER1 are summarized in Table 1. 

 

Aromatase 

During the breeding season, a strong immunoexpression of P450 aromatase was 

observed in the nuclei of ciliated cells while some other nuclei were not stained, the 

cytoplasm of the ciliated cells was moderately immunoreactive. However the nonciliated 

cells and the extruded cells showed no immunohistological staining (Fig. 2). Smooth 

muscle cells showed a weak immunoreaction. During the resting season, 

immunohistochemical signal of P450 aromatase was mainly localized in the cytoplasm of 

the ciliated cells and nonciliated cells, some nuclei were negative. The smooth muscle cells 

and the fibroblast remained negative.  

 

17-β Estradiol (E2) 

During the breeding season, the immunohistological signal of the 17-β Estradiol 

was located in the basal cells, some ciliated cell were moderately marked some others were 

not stained. However, the nonciliated cells were unreactive while smooth muscle cells and 

fibroblasts were positive (Fig. 2). During the resting season, ciliated cells were weakly 

stained for the 17-β Estradiol, but some of them presented either non-marked cytoplasm or 
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non-marked nuclei, while the nonciliated cells had a moderately marked cytoplasm and a 

few weakly stained nuclei. Some fibroblast, smooth muscle cells and extruded cells were 

positive. 

 

Androgen receptor (AR) 

During the breeding season, a moderate immunohistological staining was located in 

the nuclei and the supranuclear zone of the ciliated cells as well as the basal cells. 

Nonciliated cells were unreactive, while the smooth muscle cells were weakly marked, and 

the extruded cells were moderately marked (Fig. 2). During the resting season, the AR was 

strongly expressed in the nonciliated cells, as well as the cytoplasm of the ciliated cells 

while some of their nuclei were moderately reactive and others were negatively reacted. 

However, the smooth muscle cells and the fibroblast presented a strong staining.  

 

Estrogen receptor 1 (ESR1) 

During the breeding season, the immunohistological signal was detected in the 

nuclei and the cytoplasm of the ciliated cells, the basal cells, smooth muscle cells and 

fibroblasts, signal was absent in the nonciliated cells (Fig. 3). During the resting season, all 

type of cells were marked while some ciliated cells were not. 

 

Estrogen receptor 2 (ESR2) 

During the breeding season, ciliated cells were strongly marked, while basal cells 

were not, fibroblasts, smooth muscle cells as well some nuclei and cytoplasm of 

nonciliated cells were moderately marked (Fig. 3). During the resting season, we observed 

a strong signal in the basal cells, ciliated cells and nonciliated cells were moderately 

stained, others were not. Some fibroblast and smooth muscle cells were positive. 

 

G protein-coupled estrogen receptor 1 (GPER1) 

During the breeding season, a supranuclear immunohistochimical reaction was 

present in ciliated cells and nonciliated cells, some nuclei of ciliated cells were marked but 

the nuclei of the nonciliated cells were negative, basal cells were moderately marked, 

smooth muscle cells and extruded cells were also positive (Fig. 3). During the resting 

season, some ciliated cells and nonciliated cells presented a strong nuclear and 
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supranuclear immunohistological reaction while others were not marked, basal cells and 

smooth muscle cells were moderately stained, some fibroblasts were positive. 

 

DISCUSSION  

 Considering that, Psammomys obesus has a seasonal reproduction cycle, several studies 

performed to describe this cycle in both hormonal[39] and cytophysiological terms[40–42]. 

While there are few studies dealing with the effects of seasonal variation on the histology 

and the cytology of the efferent ducts. Our results showed a structural reorganisation of the 

tubular epithelium as well as in the connective tissue, confirming data obtained by Oliveira 

et al. [43] which showed a similar reorganisation in the efferent ducts of the bat. 

 However, earlier studies carried out on the male excurrent duct system highlighted an 

important structural reshuffle in the epithelium and the connective tissue. In fact, studies of 

Gernigon [41] and Menad et al. [44] revealed a remarkable epithelial atrophy and a 

significant proliferation of the connective tissue in the epididymis. 

 In the sand rat, during the resting season we observed a proliferation of the connective 

tissue and a blatant decrease in the epithelium height, Oliveira et al. [43] obtained similar 

results. In the epididymis, such observation was described in the sand rat [44] and the 

Libyan jirds [45]. The same author reported an accumulation of collagen I and III in 

seminal vesicles in the jirds [46], possibly due to the decrease levels of testosterone. In 

fact, it has been proven that testosterone regulates the quantity and the quality of the 

extracellular components via the MMP and their inhibitors TIMPS [47]. 

 Even though, studies focused only on the seasonal variation effects on the androgenic 

profile, oestrogen from aromatisation of androgen plays a key role in the regulation of the 

male reproductive functions. 

The aim of this study is to reveal the localization of the P450 aromatase, E2, 

Androgen receptor and oestrogen receptors (ESR1, ESR2, GPER1) in the efferent ducts of 

the psammomys obesus, during the breeding season and the resting season, in order to 

define the effects of the seasonal variation on their distribution (Fig. 4). 

Aromatase was located in the ciliated cells and the smooth muscle cells, during the 

breeding season, in the ciliated cells and the nonciliated cells during the resting season in 

the sand rat, Oliveira et al. [43] reported similar data in the big fruit-eating bat, which 

support the idea that oestrogen is locally synthetized in the efferent ducts. In the testis, 
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there was a reduced concentration of aromatase during the regression season[48–50], the 

unchanged aromatase localization in the ciliated cells at resting season possibly because 

levels of oestrogen need to be maintained in this tissue during this season.  

Androgen receptor was present in the ciliated cells, the basal cells and the smooth 

muscle cells during the breeding season, and present in all cell types during the resting 

season. This data corroborate with those obtained by Oliveira et al. [43]. Several studies 

showed that AR levels in the efferent ducts are lower than in the epididymis [11,12,51]. 

Androgen regulates androgen receptor, so during the resting season, even if there is severe 

changes in testosterone levels, another AR ligand like DHT or androstenedione may are 

responsible for controlling levels of AR. This may suggest that efferent ducts functions 

depends on the androgen during both seasons.  

Estrogen exert an important role in regulating and maintaining the male 

reproduction, that’s why E2 expression was detected in ciliated cells, fibroblasts and 

smooth muscle cells during both seasons, while it appeared in nonciliated cells during the 

resting season. E2 expression was also described in the testis[52,53] as well as in the 

epididymis [44]. It is possible that oestrogen regulates the functions of the efferent ducts, 

by maintaining the role of the ciliated cells, fibroblast and smooth muscle cells during both 

season, the role of the nonciliated cells during the resting season. 

ESR1 is largely expressed in the efferent ducts. Our data showed the localization of 

this receptor in the ciliated cells, basal cells, fibroblasts and smooth muscle cells. Oliveira 

et al. [43] and Joseph et al. [20]stated a slightly positive or negative immunoreactivity of 

the ESR1 during the breeding season and the resting season in the bat, mouse, hamster and 

monkey. Studies showed the presence of ESR1 in rats[16,54], mice [24], roosters [55], 

dogs, cats [17], goats [11], monkeys [56] and humans [57]. According to Hess et al. 

[54]and Hess et al. [27], ESR1 dominates the efferent ducts. The same author suggests that 

E2 is not the one indispensable for the efferent duct morphology and function, but its 

receptor, ESR1. 

ESR1 regulates fluid reabsorption in the efferent ducts [54] by controlling ion 

transporters in the epithelium and altering the proteins involved in fluid reabsorption [58–

62], this regulation is essential for male fertility[60,63–66]. In the ESR1 knockout mice, a 

dramatic dilatation in the epithelium of the rete testis[63], due to the inactivation of ESR1 

in the efferent duct [54], a reduce of the epithelium height, the absence of microvilli and 
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the endocytic apparatus, distension of the efferent duct was reported[54]. The recent data 

provided by Nanjappa et al. [67] indicated both nuclear and membrane localization of 

ESR1 are necessary for normal morphology of the efferent duct. 

The expression of ESR2 in the efferent duct was found in the ciliated cells, 

nonciliated cells, fibroblast and smooth muscle cells. Oliveira et al. [43]reported similar 

observations in the bat. During the resting season ESR2 appeared in the basal cells 

possibly because of its expression was inhibited by testosterone during the breeding 

season. Oliveira et al. [43] have shown no seasonal variation of the ESR2 in basal cells. 

The functions of the basal cells in the efferent ducts are not yet elucidated. However, these 

cells exert a crucial paracrine role in the epididymal epithelium, indeed basal cells regulate 

the functions of the principal cells, which are responsible for the sperm maturation [68].  

The immunohistological signal of the novel oestrogen receptor GPER1 was strong 

in the ciliated cells, weak in the nonciliated cells and smooth muscle cells, average in the 

basal cells. While during the resting season, the staining was ubiquitous in all the 

epithelium. The supranuclear staining of the GPER1 may reflect its cellular localization in 

the endoplasmic reticulum or Golgi apparatus [69–74]. 

In the sand rat, it seems like the immunoexpression of the ESR1, ESR2, GPER1 in 

the ciliated cells and the smooth muscle cells are constitutive and are not influenced by the 

season. An interesting observation that these receptors co-existed in ciliated cells and 

smooth muscle cells, this supports the notion of a crosstalk between the ESR1, ESR2 and 

GPER1, probably in a common signalosome, for estrogenic signal transduction [75–77]. In 

fact, the co-expression of ESR1 and ESR2 with GPER in breast cancer cells suggest a 

possible interaction between these receptors [75–77] as well as in uterine epithelial cells, 

where the GPER1 functions as inhibitor of cell growth mediated by E2 through the ESR1 

[78]. 

The ERs could have regional distribution in the efferent ducts. Indeed, an increase 

of immunohistological staining was described in the efferent duct of the rooster [79]. All 

this data represent strong indicators that oestrogen may have a role in the contraction of the 

smooth muscle cells as well as in the remodelling of the connective tissue in the efferent 

ducts. 

 

CONCLUSIONS 
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Considering that the efferent ducts are an essential part of the male reproductive 

tract and that their normal function is required for male fertility. It is important to elucidate 

its different functional mechanism as well as the molecules involved in the regulation of 

those functions, knowing that oestrogen alongside with androgen interact to control the 

male reproductive system. 

Our study provided for the first time data about the localisation of these main 

effectors that regulate the male reproductive tissue, establishing the expression profile of 

the Aromatase, AR, E2, ERs and GPER1. The present data give a preview on the impact of 

seasonal variation on the expression of these molecules. Further studies are needed to 

examine the effect of different treatment or inactivation of one of these receptors on the 

efferent duct functioning.  
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Table 1. Immunolocalization of aromatase, 17-β Estradiol, AR, ESR1, ESR2 and GPER1 

in efferent ducts of the sand rat (Psammomys obesus) during the breeding season and the 

resting season. 

 
  

 Breeding season Resting season 

  Aro AR E2 ESR1 ESR2 GPER1 Aro AR E2 ESR1 ESR2 GPER1 

Ciliated 

cells 

N +++/- ++ ++/- +++/- +++ ++/- +/- -/++ +/- ++/- +++/- -/+++ 

C ++ ++SN ++/- +++/- +++ +++SN/- ++ +++ ++/- ++/- ++/- +++SN/- 

Nonciliated 

cells 

N - - - - ++/- - +/- +++ +/- +++ ++/- +++/- 

C - - - - ++/- +SN /- ++ +++ ++ ++ ++ +++SN/- 

Basal cells N ND ++ + ++ - ++/+ ND ND ND ++ +++ ++ 

C ND ++ + ++ - ++/+ ND ND ND ++ +++ ++ 

Fibroblasts N ND ND ++ +/++ ++ ND - +++ ++/- +++ ++/- -/++ 

Smooth 

muscle cells 

N + + + ++/+ ++ + - +++ +/- +/++ +/- +++ 

Extruded 

cells 

N - ++ ND ND ND +++ ND ++ +/- ND ND ND 
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Fig. 1. Histology of the efferent ducts of the sand rat Psammomys obesus (breeding 

season: 1A,1B, resting season :1C,1D). Panels 1A and 1B during the breeding season (H&E 

stain). The epithelial sections consist of pseudostratified columnar epithelium with irregular 

height, formed of three cellular categories: ciliated cells, nonciliated cells, basal cells. The 

epithelium of each section is surrounded with two layer of smooth muscle cells. The lumen 

contains spermatozoa. Panels 1C and 1D during the resting season (Masson's Trichrome). 

The connective tissue shows an important proliferation. A significant decrease in the height 

of the epithelium was observed containing the ciliated cells and the nonciliated cells without 

the granules observed during the breeding season. 
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Fig. 2. Immunohistochemistry of Aromatase, AR and E2 in the efferent ducts of the 

sand rat Psammomys obesus (breeding season: 2A, 2C, 2E, resting season 2B, 2D, 2F).  

Panels 2A and 2B illustrate immunohistochemistry of Aromatase. During the breeding 

season (2A), the immunohistological staining was mainly located in ciliated cells and 

smooth muscle cells. During the resting season (2B) some ciliated cells and some 

nonciliated cells were marked while others were not, smooth muscle cells and fibroblast 

were negative. Panels 2C and 2D illustrate immunohistochemistry of Androgen receptor. 
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During the breeding season (2C), the signal was found in ciliated cells, basal cells, smooth 

muscle cells and extruded cells, but not in nonciliated cells. During the resting season (2D) 

ciliated cells, nonciliated cells, fibroblast and smooth muscle cells were stained, whereas 

some ciliated cells were not. Panels 2E and 2F illustrate immunohistochemistry of E2. 

During the breeding season (2E) the immunohistological reaction was observed in ciliated 

cells, nonciliated cells, basal cells, fibroblast and smooth muscle cells, some ciliated cells 

and nonciliated cells were negative. During the resting season (2F) the immunohistological 

signal was detected in ciliated cells, some extruded cells, fibroblast and smooth muscle 

cells, the nonciliated cells were positive but some of their nuclei were negative. Hollow 

arrows signify absence of staining; filled arrows signify presence of staining. 
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Fig. 3. Immunohistochemistry of ESR1, ESR2 and GPER1 in the efferent ducts of the 

sand rat Psammomys obesus (breeding season: 3A, 3C, 3E, resting season 3B, 3D, 3F).  

Panels 3A and 3B illustrate immunohistochemistry of ESR1. During the breeding season 

(3A), the immunohistological staining was mainly located in ciliated cells, basal cells, 

fibroblast and smooth muscle cells; some nonciliated cells were also marked. During the 

resting season (3B) nonciliated cells, basal cells and fibroblast are positive, some ciliated 
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cells and smooth muscle cells are negative. Panels 3C and 3D illustrate 

immunohistochemistry of ESR2. During the breeding season (3C), the signal was found in 

ciliated cells, nonciliated cells, basal cells, fibroblast and smooth muscle cells, but some 

ciliated cells and nonciliated cells were not marked. During the resting season (3D), 

ciliated cells, nonciliated cells, basal cells, fibroblast and smooth muscle cells were 

immunoreactive, whereas others were not, basal cells were also stained. Panels 3E and 3F 

illustrate immunohistochemistry of GPER1. During the breeding season (3E) the 

immunohistological reaction was observed in ciliated cells, nonciliated cells, basal cells, 

smooth muscle cells and extruded cells, some ciliated cells and nonciliated cells were 

negative. During the resting season (3F) the immunohistological signal was detected in 

nonciliated, basal cells, fibroblast and smooth muscle cells, the ciliated cells were positive 

but some of their nuclei were negative. Hollow arrows signify absence of staining; filled 

arrows signify presence of staining. 
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Figure 4. Schematic representation of the expression of P450 aromatase, E2, AR, ESR1, 

ESR2 and GPER1 in the efferent ducts of the Psammomys obesus during the breeding 

season and the resting season. 

 


